Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon researchers open window into the ability of humans to recognize faces

05.04.2005


Recognizing faces is effortless for most people, and it’s an ability that provides great evolutionary and social advantages. But this ability is impaired in people who have suffered brain damage or in those with a rare congenital condition, and research by Carnegie Mellon University psychologists reveals startling insights into how the brains of those individuals operate. Psychology Professor Marlene Behrmann and postdoctoral associate Galia Avidan have found that people with congenital prosopagnosia--in which their ability to recognize faces is impaired from birth--are not just deficient at recognizing individuals they know, but they are also poor at simply discriminating between two faces when presented side by side. The researchers also have discovered through functional Magnetic Resonance Imaging (fMRI) scans that, contrary to their expectations, the regions of the brain that are activated when normal individuals perceive and recognize faces also are activated in individuals with congenital prosopagnosia (CP). Behrmann and Avidan will summarize the results of their findings in the April issue of the journal Trends in Cognitive Sciences.



"This now presents a large scientific challenge. Given that the impaired behavior in those individuals with prosopagnosia is a function of the brain, we need to identify the neural system that has given rise to this altered pattern of behavior," Behrmann said. "The detective work is well under way."

Unlike the acquired form of prosopagnosia--which results from brain damage such as that suffered in a stroke--congenital prosopagnosia can go undetected, as the person has no means of comparison with normal face processing skills. This can have socially debilitating consequences, and on occasion children with this condition have been misdiagnosed as having autism.


"The potential ramifications of CP are best captured in the words of one individual whom we have had the opportunity to test: ’I have always been a rather extreme introvert, uncomfortable in groups of people and in social activities. I sort of tend to want to be a hermit. However, I find it relaxing to go window-shopping in a mall. A crowd of a hundred strangers is more relaxing than a dozen neighbors whom I know,’" Behrmann said.

Behrmann and Galia said that much remains to be learned from the individuals in their research. They have begun to examine the anatomical details of the brains of their participants, and preliminary findings show that some brain structures are smaller in the region known to control face recognition. Congenital prosopagnosia seems to run in families, which suggests a genetic basis, although that is not true in every case and Behrmann cautioned against calling the condition a genetic disorder. Unfortunately, a cure for the disorder is unlikely to be found anytime soon.

"The work on CP is in its infancy and we still need to understand the psychological and neural aspects of the disorder in detail. It is possible, however, that some forms of intervention may become possible in the near future," Behrmann said.

Jonathan Potts | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>