Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon researchers open window into the ability of humans to recognize faces

05.04.2005


Recognizing faces is effortless for most people, and it’s an ability that provides great evolutionary and social advantages. But this ability is impaired in people who have suffered brain damage or in those with a rare congenital condition, and research by Carnegie Mellon University psychologists reveals startling insights into how the brains of those individuals operate. Psychology Professor Marlene Behrmann and postdoctoral associate Galia Avidan have found that people with congenital prosopagnosia--in which their ability to recognize faces is impaired from birth--are not just deficient at recognizing individuals they know, but they are also poor at simply discriminating between two faces when presented side by side. The researchers also have discovered through functional Magnetic Resonance Imaging (fMRI) scans that, contrary to their expectations, the regions of the brain that are activated when normal individuals perceive and recognize faces also are activated in individuals with congenital prosopagnosia (CP). Behrmann and Avidan will summarize the results of their findings in the April issue of the journal Trends in Cognitive Sciences.



"This now presents a large scientific challenge. Given that the impaired behavior in those individuals with prosopagnosia is a function of the brain, we need to identify the neural system that has given rise to this altered pattern of behavior," Behrmann said. "The detective work is well under way."

Unlike the acquired form of prosopagnosia--which results from brain damage such as that suffered in a stroke--congenital prosopagnosia can go undetected, as the person has no means of comparison with normal face processing skills. This can have socially debilitating consequences, and on occasion children with this condition have been misdiagnosed as having autism.


"The potential ramifications of CP are best captured in the words of one individual whom we have had the opportunity to test: ’I have always been a rather extreme introvert, uncomfortable in groups of people and in social activities. I sort of tend to want to be a hermit. However, I find it relaxing to go window-shopping in a mall. A crowd of a hundred strangers is more relaxing than a dozen neighbors whom I know,’" Behrmann said.

Behrmann and Galia said that much remains to be learned from the individuals in their research. They have begun to examine the anatomical details of the brains of their participants, and preliminary findings show that some brain structures are smaller in the region known to control face recognition. Congenital prosopagnosia seems to run in families, which suggests a genetic basis, although that is not true in every case and Behrmann cautioned against calling the condition a genetic disorder. Unfortunately, a cure for the disorder is unlikely to be found anytime soon.

"The work on CP is in its infancy and we still need to understand the psychological and neural aspects of the disorder in detail. It is possible, however, that some forms of intervention may become possible in the near future," Behrmann said.

Jonathan Potts | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>