Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Research To Help In Fight Against Cardiovascular Disease

21.03.2005


Scientists at the University of Liverpool, supported by the British Heart Foundation, are studying blood flow in the brain to further medical understanding of cardiovascular disease.



Dr John Quayle and Dr Tomoko Kamishima, from the University’s Department of Human Anatomy and Cell Biology, are investigating why blood supply to the brain becomes inadequate during serious illnesses, such as strokes. Approximately one in eight people are diagnosed with a disease of the heart or circulatory system in the UK each year and more than a 100,000 of these cases result in death.

Dr Quayle is studying blood flow by analysing how a muscle - which lines the walls of arteries in the brain - contracts to force the arteries to become narrower and reduce blood flow. These cerebral arteries are no bigger than the width of human hair and are the most important in regulating blood flow.


Dr Quayle explains: “Blood is supplied to the brain through blood vessels called cerebral arteries. However, despite their importance, the behaviour of these vessels is not well understood. The vessels are lined with muscle cells and when these cells contract in response to stimulation, the arteries become narrower and reduce blood flow. This can cause severe damage to the heart and other major organs in the body.

“Many scientists have used large arteries to study heart disease, but we have shown that the physiology of large arteries and small arteries is very different. We believe that a better understanding of these very small arteries will be important in developing treatments for heart diseases.

“There are occasions when arteries have to contract as a natural function, but so far scientists have been unable to identify how this occurs. Understanding the basic mechanism that dictates artery contraction is the first step in solving heart problems.”

The team will conduct the research by using molecules called nucleotides, which stimulate muscle contraction. Nucleotides also have a role in atherosclerosis, which clogs up the arteries with fatty deposits, preventing blood flow to the rest of the body.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>