Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shutting down the HIV assembly line

11.03.2005


After infecting a susceptible cell, the human immunodeficiency virus hijacks that cell’s normal machinery to produce carbon copies of itself. New HIV particles roll off the cellular assembly lines, burst like bubbles out of the cell, and float off to invade other cellular factories. Vanderbilt University Medical Center investigators have now identified an early step in HIV particle assembly. The findings, published March 11 in Cell, could lead to new drugs that combat HIV infection by shutting down the virus’s assembly lines.



For several years, Paul W. Spearman, M.D., associate professor of Pediatrics and Microbiology & Immunology, and colleagues have been studying the assembly of HIV particles, specifically the distinct steps HIV structural proteins take in order to come together and create a viral particle. "The assembly process is just one part of the whole HIV life cycle," Spearman noted, "but it’s an important part in that each step along the way is required to make an infectious viral particle."

Spearman’s team has focused on a protein called "Gag," the major HIV structural protein. In recent years, Spearman said, it has become apparent that Gag moves to a compartment in the cell called the multivesicular body, or late endosome. In some cell types, Gag and the HIV viral envelope protein form particles in the multivesicular body; in other cell types, Gag makes its way from this site to the cell membrane before assembling into particles.


Although many studies have demonstrated that Gag is present in the late endosome and have focused on particle assembly at that point, none have tackled how the Gag protein gets there in the first place. The current work fills this gap. Spearman and colleagues used the HIV-1 Gag protein as bait to "fish" for Gag binding partners. They identified several known and novel interacting proteins and selected one, the delta subunit of AP-3, for further evaluation. AP-3 is an "adaptor protein complex," a group of four proteins known to sort cargo proteins to specific compartments in the cell.

Through a series of experiments, the group demonstrated that the AP-3 delta subunit interacts with Gag to direct it to the multivesicular body. Disruption of the interaction, using a specific piece of the AP-3 subunit, eliminated Gag trafficking to the multivesicular body and diminished HIV particle formation in cells. "The significance of this paper comes from really identifying how Gag gets to the multivesicular body and in demonstrating that if you block that trafficking step specifically, you block production of particles," Spearman said. "That says this is not a dead-end pathway, but that it is part of the normal, productive assembly pathway."

The newly identified early step in the HIV assembly process could be a target for a new generation of drugs to combat the virus. No existing anti-HIV drugs disrupt particle assembly or the movement of Gag in the cell. "We have hopes of identifying compounds that inhibit this Gag-AP-3 interaction and that may lead to new efforts to treat HIV infection," Spearman said.

Such drugs should be very specific, he said, since it should be possible to block Gag’s interaction with AP-3 without disrupting AP-3 function in the cell. And by targeting an early step in HIV particle assembly, an inhibitor of this sort would be expected to block viral replication in cells that complete assembly at the multivesicular body as well as those that assemble particles at the cell membrane.

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>