Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shutting down the HIV assembly line

11.03.2005


After infecting a susceptible cell, the human immunodeficiency virus hijacks that cell’s normal machinery to produce carbon copies of itself. New HIV particles roll off the cellular assembly lines, burst like bubbles out of the cell, and float off to invade other cellular factories. Vanderbilt University Medical Center investigators have now identified an early step in HIV particle assembly. The findings, published March 11 in Cell, could lead to new drugs that combat HIV infection by shutting down the virus’s assembly lines.



For several years, Paul W. Spearman, M.D., associate professor of Pediatrics and Microbiology & Immunology, and colleagues have been studying the assembly of HIV particles, specifically the distinct steps HIV structural proteins take in order to come together and create a viral particle. "The assembly process is just one part of the whole HIV life cycle," Spearman noted, "but it’s an important part in that each step along the way is required to make an infectious viral particle."

Spearman’s team has focused on a protein called "Gag," the major HIV structural protein. In recent years, Spearman said, it has become apparent that Gag moves to a compartment in the cell called the multivesicular body, or late endosome. In some cell types, Gag and the HIV viral envelope protein form particles in the multivesicular body; in other cell types, Gag makes its way from this site to the cell membrane before assembling into particles.


Although many studies have demonstrated that Gag is present in the late endosome and have focused on particle assembly at that point, none have tackled how the Gag protein gets there in the first place. The current work fills this gap. Spearman and colleagues used the HIV-1 Gag protein as bait to "fish" for Gag binding partners. They identified several known and novel interacting proteins and selected one, the delta subunit of AP-3, for further evaluation. AP-3 is an "adaptor protein complex," a group of four proteins known to sort cargo proteins to specific compartments in the cell.

Through a series of experiments, the group demonstrated that the AP-3 delta subunit interacts with Gag to direct it to the multivesicular body. Disruption of the interaction, using a specific piece of the AP-3 subunit, eliminated Gag trafficking to the multivesicular body and diminished HIV particle formation in cells. "The significance of this paper comes from really identifying how Gag gets to the multivesicular body and in demonstrating that if you block that trafficking step specifically, you block production of particles," Spearman said. "That says this is not a dead-end pathway, but that it is part of the normal, productive assembly pathway."

The newly identified early step in the HIV assembly process could be a target for a new generation of drugs to combat the virus. No existing anti-HIV drugs disrupt particle assembly or the movement of Gag in the cell. "We have hopes of identifying compounds that inhibit this Gag-AP-3 interaction and that may lead to new efforts to treat HIV infection," Spearman said.

Such drugs should be very specific, he said, since it should be possible to block Gag’s interaction with AP-3 without disrupting AP-3 function in the cell. And by targeting an early step in HIV particle assembly, an inhibitor of this sort would be expected to block viral replication in cells that complete assembly at the multivesicular body as well as those that assemble particles at the cell membrane.

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>