Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Invents Small-Diameter Artificial Arteries

04.03.2005


A patient needs a small-diameter bypass graft to replace a diseased blood vessel because of the progression of diabetes or the result of smoking.



Due to these chronic health issues, the patient’s veins can no longer be used for such a procedure. While large artificial arteries (10 to 15 millimeters in diameter) have been in use for about 50 years for replacing large blood vessels, development of a small-diameter artificial artery (less than 5 millimeters) has been unsuccessful due to rapid failure when implanted.

Martin Bide, a textile chemist at the University of Rhode Island, Matthew Phaneuf, president of BioSurfaces, Ashland, Mass., and Philip J. Brown of the School of Materials Science and Engineering at Clemson University, have developed a new way to synthesize such grafts from material made of polyester and collagen. A Phase I Small Business Innovative Research Grant (SBIR) from the National Heart, Lung and Blood Institute from the National Institutes of Health funded the research.


The trio said in its research summary that more than 500,000 peripheral bypass and coronary artery bypass grafts are implanted in the United States annually, so the potential annual market for a synthetic bypass graft could exceed $1.5 billion. Up until the team’s work, very little had changed with the technology related to artificial arteries since the mid-1950s, according to Phaneuf.

The polyester and collagen are electrospun into a mesh of ultra-fine fibers. Electrospinning uses electrostatic forces to distort a droplet of polymer solution into a fine filament to be deposited onto a surface. The process allows production of novel synthetic fibers of unusually small diameter and good mechanical properties. Other potential applications include wound dressing materials, artificial organs, and protective clothing. The researchers say the collagen allows the attachment of bioactive proteins that will promote healing and reduce clot formation.

Currently, no clinically available small (5 millimeter in diameter and smaller) vascular grafts can emulate the biological and physical properties of normal arteries. Implanted grafts of currently available materials fail because of clotting and stiffness as related to normal blood vessels. “A small vessel prosthesis (artery graft) that better emulates normal arterial walls would greatly improve the treatment of both peripheral vascular disease and coronary artery disease,” the researchers state in a summary of their research. “This is one of the applications it suits perfectly since conventional fiber extrusion technology is incapable of making such a material i.e., one that can combine proteins and synthetic materials together to form a composite small- scale device with all the right kind of properties,” Brown said.

The technology developed by Phaneuf, Brown and Bide is called “a nanofibrous biocomposite prosthetic vascular graft.” “The first choice for such a procedure is a patient’s own veins,” Bide said, “but when those veins have been damaged as a result of chronic illness, such as diabetes or those conditions related to smoking, then surgeons need an alternative.” “We employ the electrospinning process to create nanofibers with very large surface area for their weight,” Phaneuf said.

Bide said the collagen will be eliminated as the body’s own cells take up spaces in the artery or graft, thus reducing the potential for rejection. “We know through our early research that we can link proteins to the grafts and add anti-clotting treatments, as well as growth factors and other bioactive agents,” Bide said.

The next step for the three researchers, after successful completion of the Phase II SBIR studies, is to find a private company interested in licensing the product to allow for further research and eventual production for the market. “As a scientist, you always want to see an invention fully developed so that it can be used to help people,” Phaneuf said.

| newswise
Further information:
http://www.uri.edu

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>