Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dysentery uses ’sword and shield’ to cause infection

25.02.2005


Scientists have found that the bacterium that causes dysentery uses a ’sword and shield’ approach to cause infection.



According to research published today in Science, the team from Imperial College London and Institut Pasteur, Paris, found that shigella, the bacteria which causes dysentery, is able to invade cells, while stopping any response from the immune system.

They found that shigella was able to infect cells by using a secretion system to inject proteins into human cells, (the sword), while lipopolysaccharide (LPS) on the surface of the bacteria acts as a shield to protect the dysentery bacterium from being destroyed by the body’s immune system.


Dr Christoph Tang, from Imperial College London, and one of the researchers, comments: "This is the first description of bacteria able to use this ’sword and shield’ approach, showing how dysentery is able to infect the body so effectively. We have shown why the bacteria can avoid being destroyed by the body’s immune responses through the expression of a molecule that acts as a shield on its surface."

The researchers found that shigella, the bacteria causing dysentery uses a Type III secretion system to inject proteins into human cells. This causes the cells to become inflamed, resulting in symptoms of dysentery, such as bloody diarrhoea. At the same time, the LPS chains on the surface of the bacteria are shortened. This allows the needles to inject proteins, while protecting the bacteria from being destroyed by the immune system.

Dr Tang adds: "This discovery greatly expands our understanding of how bacteria are sometimes able to evolve although it is unlikely to result in new treatments or vaccines for dysentery. In this case, the dysentery bacteria has evolved into a highly effective and dangerous infection."

Tony Stephenson | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>