Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-Ray Beams and Fruit Fly "Flight Simulator" Show Muscle Power

15.02.2005


What is the connection between a fly’s aerodynamic skill and human heart function? Using the nation’s most brilliant X-rays, located at the Advanced Photon Source at the U.S. Department of Energy’s Argonne National Laboratory, a cardiac molecular motors expert from the University of Vermont (UVM) and colleagues from the Illinois Institute of Technology (IIT) and Caltech performed research to answer that and other questions.

The research team, including David Maughan, Ph.D., research professor of molecular physiology and biophysics at the UVM College of Medicine, published their results in a report in the Jan. 20 issue of the British journal Nature.

To conduct their research, Maughan and his IIT and Caltech colleagues merged extremely bright X-ray beams and a "virtual-reality flight simulator" for flies, designed by Michael Dickinson of Caltech, to probe the muscles in a flying fruit fly and examine how it generates the extraordinary levels of power that result in flight.



The intense X-rays allowed the researchers to identify changes in the crystal-like arrangement of molecules responsible for generating the rapid contractions of the fly’s muscle with a resolution of 6/10,000th of a second. The flight simulator, which fools a tethered fly into thinking it is flying freely through the air, is necessary to produce a stable pattern of wing motion and enabled the team to capture X-ray images at different stages of muscle contraction. By combining the technologies, the researchers could reconstruct a ’movie’ of the molecular changes in the powerful muscles as they lengthen and shorten to drive the wings back and forth 200 times each second. "At the molecular level, the insect’s flight muscle and a human heart are remarkably similar," Maughan said. "We biologists have always been amazed by how hard these muscles work. Now we have taken advantage of the fruit fly’s small size and shone light right through the whole animal, illuminating the working muscles during flight and probing the molecular motions deep within the muscle cells."

These experiments uncovered previously unsuspected interactions of various proteins as the muscles stretch and contract. The results suggest a model for how these powerful biological motors turn "on" and "off" during the wingbeat. "Small flying insects face an enormous task - generating enough power to overcome gravity, air resistance and drag - and they do this by beating their wings ferociously," said Maughan. "We found out that timing is key, where certain molecules have to be positioned exactly with respect to others during each phase of the wing beat in order to produce the high power output."

The researchers note that the many similarities between insect muscle and other oscillatory muscles, including human cardiac muscle, mean that the research may be adaptable for other uses. "Both insect flight and human heart muscles store energy during each beat that is later used to help flap the wings or expand the heart after contraction. We found that flying insects store much of the elastic energy in the protein filaments themselves, which minimizes the power costs," Maughan said.

A previous publication by Maughan and Tom Irving of IIT demonstrated the feasibility of taking movies of molecular changes in live flies. UVM’s Instrument and Model Facility (IMF), directed by Tobey Clark, built a rotating shutter used in the earlier experiment. IMF scientists Carl Silver and Gill Gianetti fabricated the high-speed device. "How the fly’s muscles turn off and on at 200 times a second has been a mystery that we now can solve in detail using these new technologies" Maughan said.

Maughan and his colleagues’ research experiences with genetically malleable fruit flies has increased the potential for addressing much more specific questions about the roles of various protein components in muscle function using mutant or genetically-engineered flies. Currently, Maughan is collaborating with Jim Vigoreaux, Ph.D., associate professor of biology at UVM, and Doug Swank of Rensselaer Polytechnic Institute, to determine what parts of the flight muscle proteins are responsible for the high speed.

Collaborators on the X-ray project, in addition to Dickinson and Maughan, are Gerrie Farman, Tanya Bekyarova and David Gore of IIT, and Mark Frye of Caltech.

| newswise
Further information:
http://www.uvm.edu

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>