Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination therapy boosts effectiveness of telomere-directed cancer cell death

18.01.2005


A new research study published in the January issue of Cancer Cell provides exciting new information about how to boost the effectiveness of a promising cancer treatment that targets telomeres in an attempt to interfere with the ability of a cancer cell to continuously divide.



Telomeres are DNA sequences found at the ends of chromosomes that play a key role in controlling the life span of cells. With every cell division, telomeres get a bit shorter until eventually they become so short that the enzymes that copy DNA for cell division no longer work properly and the cell stops dividing. In a sense, telomeres function as a kind of counting mechanism that regulates how many times a cell can divide.

In contrast to normal cells, cancer cells divide continuously and uncontrollably. Scientists know that cancer cells produce an enzyme, called telomerase, which prevents telomeres from getting too short so cells can keep dividing. Telomerase is not used by healthy cells, and has been identified as a logical target for anticancer therapeutics. However, recent studies indicate that for this therapy to be effective, telomeres must be in a critically short state, requiring an extended treatment duration that can lead to drug resistance and other problems.


Dr. Hiroyuki Seimiya from the Japanese Foundation for Cancer Research in Tokyo and colleagues examined what happens to cancer cells when telomerase inhibition is combined with inhibition of an enzyme called tankyrase 1 that is involved in making telomeres accessible to telomerase. The researchers found that both tankyrase 1 activity and telomere shortening decrease the effects of telomerase inhibitors. Importantly, tankyrase inhibition enhanced telomere shortening upon treatment with a telomerase inhibitor and accelerated cancer cell death.

"This study provides insight into strategies for telomere-based molecular cancer therapeutics. We expect that inhibition of tankyrase 1 will compensate for incomplete inhibition of telomerase. Consequently, this strategy would shorten the time period of drug treatment that is required for the onset of telomere crisis and reduce the potential risk of acquired drug resistance, " writes Dr. Seimiya.

Hiroyuki Seimiya, Yukiko Muramatsu, Tomokazu Ohishi, and Takashi Tsuruo: "Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics"

The context and implications of this work are discussed in a Preview by Shay et al.

The other members of the research team include Yukiko Muramatsu of the Japanese Foundation for Cancer Research in Tokyo; and Tomokazu Ohishi and Takashi Tsuruo of the Japanese Foundation for Cancer Research and University of Tokyo in Tokyo.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>