Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination therapy boosts effectiveness of telomere-directed cancer cell death

18.01.2005


A new research study published in the January issue of Cancer Cell provides exciting new information about how to boost the effectiveness of a promising cancer treatment that targets telomeres in an attempt to interfere with the ability of a cancer cell to continuously divide.



Telomeres are DNA sequences found at the ends of chromosomes that play a key role in controlling the life span of cells. With every cell division, telomeres get a bit shorter until eventually they become so short that the enzymes that copy DNA for cell division no longer work properly and the cell stops dividing. In a sense, telomeres function as a kind of counting mechanism that regulates how many times a cell can divide.

In contrast to normal cells, cancer cells divide continuously and uncontrollably. Scientists know that cancer cells produce an enzyme, called telomerase, which prevents telomeres from getting too short so cells can keep dividing. Telomerase is not used by healthy cells, and has been identified as a logical target for anticancer therapeutics. However, recent studies indicate that for this therapy to be effective, telomeres must be in a critically short state, requiring an extended treatment duration that can lead to drug resistance and other problems.


Dr. Hiroyuki Seimiya from the Japanese Foundation for Cancer Research in Tokyo and colleagues examined what happens to cancer cells when telomerase inhibition is combined with inhibition of an enzyme called tankyrase 1 that is involved in making telomeres accessible to telomerase. The researchers found that both tankyrase 1 activity and telomere shortening decrease the effects of telomerase inhibitors. Importantly, tankyrase inhibition enhanced telomere shortening upon treatment with a telomerase inhibitor and accelerated cancer cell death.

"This study provides insight into strategies for telomere-based molecular cancer therapeutics. We expect that inhibition of tankyrase 1 will compensate for incomplete inhibition of telomerase. Consequently, this strategy would shorten the time period of drug treatment that is required for the onset of telomere crisis and reduce the potential risk of acquired drug resistance, " writes Dr. Seimiya.

Hiroyuki Seimiya, Yukiko Muramatsu, Tomokazu Ohishi, and Takashi Tsuruo: "Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics"

The context and implications of this work are discussed in a Preview by Shay et al.

The other members of the research team include Yukiko Muramatsu of the Japanese Foundation for Cancer Research in Tokyo; and Tomokazu Ohishi and Takashi Tsuruo of the Japanese Foundation for Cancer Research and University of Tokyo in Tokyo.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>