Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-Fisted Assault on Dopamine Transport System May Be Foundation of Parkinson’s Disease

06.12.2004


Protecting microtubule "highways" may lead to novel therapies, study shows



Parkinson’s disease may be caused by an environmental-genetic double whammy on the neurons that produce dopamine, the neurotransmitter that controls body movement, a new study has shown.

Researchers at the University at Buffalo, using cultures of rat neurons, have shown that the presence of mutated parkin genes, combined with the toxic effects of the chemical rotenone, results in a cascade of highly toxic free radicals, the destruction of microtubules that transport dopamine to the brain’s movement center, and eventual death of the dopamine-producing neuron.


"This study shows how an environmental toxin and a gene linked to Parkinson’s disease affect the survival of dopamine neurons by dueling on a common molecular target -- microtubules -- that are critical for the survival of dopamine-producing neurons," said Jian Feng, Ph.D., assistant professor of physiology and biophysics in UB School of Medicine and Biomedical Sciences and senior author. "Based on these findings, we have identified several ways to stabilize microtubules against the onslaught of rotenone. These results ultimately may lead to novel therapies for Parkinson’s disease."

Results of the research will be presented Dec. 5 at the American Society for Cell Biology meeting in Washington D.C.

Researchers who study Parkinson’s disease know that persons with a mutation in the parkin gene are at risk for the disease, and that exposure to agricultural chemicals, including rotenone, cause Parkinson’s-like symptoms in animals. In addition, long-term epidemiological studies of Parkinson’s disease patients have shown a strong link between exposure to pesticides/herbicides and increased risk of developing the disease, Feng noted.

Earlier research by several groups has shown that rotenone destroys only neurons that produce dopamine, while largely sparing neurons that produce other neurotransmitters. Dr. Feng’s laboratory set out to answer the questions "Why?" and "How?" By studying the effects of rotenone on rat neurons, they discovered that one of the targets of the pesticide was microtubules – intracellular highways for transporting various chemicals such as dopamine to the brain area that controls body movement. Normally the enzyme parkin would protect the neuron from rotenone’s assault on microtubules, Feng said.

"When microtubules are broken down by rotenone, the disassociated protein building blocks, called tubulin, are left behind," he said. "These tubulins are probably misfolded proteins. Left unattended, they could interfere with the normal assembly of microtubules. Based on our previous work that parkin marks this ’old’ tubulin for rapid degradation, we theorize that parkin may thus prevent this interference."

Mutated parkin loses this protective ability, however, allowing rotenone to do its damage unchecked. Feng and colleagues showed that rotenone damages the microtubules, which prevents dopamine from reaching the brain’s movement center, causing a back-up in the dopamine transport system. Meanwhile, the backed-up dopamine accumulates in the neuron’s cytoplasm and breaks down, causing a release of toxic free radicals, which destroy the neuron.

Additional researchers on the study were Yong Ren, Ph.D., Wenhua Liu, Ph.D. and Houbo Jiang, Ph.D., postdoctoral associates in the UB Department of Physiology and Biophysics.

The study was funded by a grant from the National Institute of Health.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Lois Bakjer | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>