Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings show how toxic proteins rob Alzheimer’s patients of memory

02.12.2004


Researchers at Northwestern University have discovered a molecular mechanism -- a tiny protein attacking nerve cells -- that could explain why the brain damage in early Alzheimer’s disease results in memory loss and not other symptoms such as loss of balance or tremors.



The research team, led by William L. Klein, professor of neurobiology and physiology, found that toxic proteins, called "amyloid ß-derived diffusible ligands" (ADDLs, pronounced "addles"), from the brain tissue of individuals with Alzheimer’s disease specifically attack and disrupt synapses, the nerve cell sites responsible for information processing and memory formation.

These results, which show that only particular neurons and synapses are targeted by the neurotoxins, were published Nov. 10 in the Journal of Neuroscience. An understanding of how ADDLs disrupt synapses without killing neurons could lead to the development of new therapeutic drugs capable of reversing memory loss in patients who are treated early, in addition to preventing or delaying the disease. "Memory starts at synapses, so it was probable that Alzheimer’s disease would be a synapse failure," said Klein. "Our work, which shows that ADDLs bind with great specificity to synapses, is the first demonstration of that.


"Why is the damage so specific to memory? First, ADDLs bind to some synapses and not others -- a very specific attack. Second, at the vulnerable synapses there is a gene linked to memory that is normally expressed. When ADDLs attack those synapses they disrupt the normal expression of that gene, resulting in memory loss." Over-expression of that gene, called Arc, has been linked to dysfunctional learning in earlier studies of memory.

Last year Klein and his colleagues were the first to discover and report the presence of ADDLs in humans. They found up to 70 times more of the toxic proteins in the brain tissue of individuals with Alzheimer’s disease compared to that of normal individuals.

In the current study, the research team used both ADDLs obtained from human brain tissue and ADDLs synthesized in the laboratory. Experiments showed that all the ADDLs, regardless of origin, showed the same pattern of binding to synapses on specific neurons. What is striking about ADDLs, said Klein, is that they disrupt the neurons’ ability to communicate with each other without killing the neurons.

"Human and animal studies have pointed to synaptic damage and loss as the key determinant of the severity of memory loss, correlating better than either neuronal loss or the presence of plaques," said Pascale N. Lacor, lead author on the paper and a research assistant professor of neurobiology and physiology.

"ADDLs selectively target a synaptic population," said Lacor, "and at these sites they modify the expression of essential memory-related molecules. We saw subtle changes happening to the gene Arc after only five minutes of exposure to ADDLs, and those changes were sustained for an unexpected long time. Our next step is to understand why ADDLed synapses have trouble staying connected and storing memories."

ADDLS are small, soluble aggregated proteins. The clinical data strongly support a recent theory in which ADDLs accumulate at the beginning of Alzheimer’s disease and block memory function by a process predicted to be reversible.

Although both are a form of amyloid beta, ADDLs and their properties differ significantly from the amyloid fibrils (known as plaques) that are a diagnostic hallmark of Alzheimer’s. ADDLs found in human brains, mostly 12 or 24 amyloid beta proteins clumped together, are tiny and undetectable in conventional neuropathology; fibrils are much, much larger. While fibrils are immobile toxic waste dumps, ADDLs are soluble and diffuse between brain cells until they find vulnerable synapses. (Single pieces of amyloid beta protein in the brain is normal.)

Klein, Grant A. Krafft, formerly at Northwestern University’s Feinberg School of Medicine and now chief scientific officer at Acumen Pharmaceuticals, Inc., and Caleb E. Finch, professor of biological sciences and gerontology at the University of Southern California, reported the discovery of ADDLs in 1998. Krafft and Finch are co-authors on the Journal of Neuroscience paper. Northwestern and USC hold joint patents on the composition and use of ADDLs in neurodisorders.

The patent rights have been licensed to Acumen Pharmaceuticals, based in Glenview, Ill., for the development of drugs that treat Alzheimer’s disease and other memory-related disorders.

In addition to Klein, Lacor, Krafft and Finch, other authors on the paper are Maria C. Buniel, Lei Chang, Sara J. Fernandez, Yuesong Gong, Kirsten L. Viola, Mary P. Lambert, Pauline T. Velasco and Eileen H. Bigio, from Northwestern University.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>