Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stronger therapy better for AML with normal genetics

30.11.2004


New research is helping select which therapies improve the chances of remission in the largest category of people affected by acute myeloid leukemia (AML) – those whose cancer cells have normal-looking chromosomes.



The findings suggest that people receiving more intense therapies are more likely to enter remission and to remain there longer than those receiving lower-dose therapies.

The study was published online Nov. 8 by the Journal of Clinical Oncology.


The Cancer and Leukemia Group B (CALGB) study was initiated by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSU CCC-James). It is part of a larger CALGB cytogenetic trial chaired by Clara D. Bloomfield, professor of internal medicine and the William G. Pace III Professor in Cancer Research, OSU Cancer Scholar and senior adviser to the OSU cancer program.

Unexpectedly, the current study also found that patients who had an enlarged spleen at the time of their initial treatment were less likely to enter remission. AML patients are in remission when leukemic cells are not microscopically detectable among their bone-marrow cells.

“These preliminary findings raise the question of whether additional treatment directed specifically to the spleen might improve remission rates,” says first author Sherif S. Farag, assistant professor of internal medicine and a medical oncologist with the OSU CCC-James. “At this point, this is just a hypothesis that needs to be tested, but it may be that the spleen is a sanctuary site for leukemic cells and needs separate treatment.”

A diagnosis of AML routinely includes studying patients’ leukemic cells for chromosome damage, a process known as cytogenetic analysis. The information helps determine the best therapy and a patient’s chance of remission and cure. But 40 percent of AML patients have leukemic cells with normal-looking chromosomes. Without chromosomal abnormalities to guide treatment, several therapies are usually used.

“This study is important because it is the first large study to examine different types of therapy that is restricted to patients with normal chromosomes,” says Krzysztof Mrózek, an internationally recognized cytogeneticist, research scientist in internal medicine and one of the paper’s coauthors. “Yet, they make up the largest single group of people with AML.”

The multi-institutional study analyzed data from 490 patients treated for AML through five clinical trials conducted over nearly 20 years. Only adult patients under 60 years of age were included.

Overall, three quarters of the patients achieved complete remission. The average overall survival for the patients was 1.9 years, with 35 percent of patients still alive and disease-free after five years (these patients were considered cured).

The researchers first compared the outcomes of patients receiving one of two drug regimens given to bring the disease into remission. The study compared 350 patients receiving the drugs cytarabine plus daunorubicin to 140 patients receiving cytarabine plus increasing doses of both daunorubicin and etoposide. They found that both treatments induced remission about equally well. But to their surprise, they also found that patients with a normal spleen were four times more likely to enter remission than patients with an enlarged spleen, regardless of therapy. The researchers then looked at the second phase of treatment, known as intensification therapy, which is intended to keep patients in remission and to enhance the rate of cure.

The study compared four intensification therapies. Of these, the two more-intense therapies each produced longer remission periods and a better chance of cure than did the two less-intense therapies. That is, four cycles of high-dose cytarabine or one cycle of high-dose cytarabine and etoposide followed by stem-cell transplant were more effective than was one cycle of high-dose cytarabine alone. “There are many different approaches to post-remission therapy, and they include using fewer cycles of high-dose cytarabine or reducing the dose of the drug, but our study suggests these treatments are inferior,” Farag says.

At the same time, the study suggested that using very high doses of cytarabine may also be unnecessary. Using an intermediate dose seems equally effective but has fewer side effects, which can include toxicity to the kidneys and brain. “This has been suspected, but it hasn’t been carefully studied,” Farag says. “Again, we need a larger randomized study in the future to verify this, but our data show that we don’t need to push the dose to the maximum to have equal anti-leukemic effect.”

The study also suggested, however, that while two of the four therapies might produce longer remission periods—also known as periods of disease-free survival—no one treatment improved overall survival. The study followed patients for an average 7.4 years. “More research and some different strategies are still needed to give higher cure rates in these AML patients,” Farag says.

Statistician Amy S. Ruppert, research specialist with the OSU Comprehensive Cancer Center and CALGB, also contributed to this study.

Funding from the National Cancer Institute (NCI) supported this study. The CALGB is a multicenter NCI clinical trials group.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>