Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring Life, One Breath At A Time

10.11.2004


Respiratory sensor may provide new tool for emergency responders


Atomic force microscopy (AFM) image of the carbon nanotube network device coated with poly(ethylene imine) and starch polymer layer for detection of CO2 gas Credit: Vikram Joshi, Nanomix



Researchers have created a tiny device that can monitor a victim’s breathing in emergency situations by effectively shrinking an operating room machine into a small, disposable tool that can be carried to a disaster site.

NSF-supported researchers at Nanomix, Inc., in Emeryville, Calif., have created a transistor that fuses carbon nanotubes, polymers and silicon into a capnography sensor -- a human breathing monitor.


Alexander Star and his colleagues at Nanomix and the University of California, Los Angeles, describe the new sensor in the cover article of the November 15 issue of the journal Advanced Materials. Their study shows that carbon nanotube transistors fused with carbon dioxide-detecting polymers can determine carbon dioxide (CO2) concentrations in both ambient and exhaled air.

Capnography sensors detect subtle changes in the concentration of carbon dioxide gas in a person’s breath, revealing respiratory diseases in children and adults, and allowing anesthesiologists to monitor a patient’s breathing during surgery.

In the field, emergency responders may be able to use the new sensor to verify proper breathing tube placement, monitor the patient’s respiratory patterns and assess the effect of life support measures.

While the Nanomix device is already capable of monitoring human breathing in laboratory settings, the researchers are collaborating with anesthesiologists and other specialists at the University of California, San Francisco, to design and test a field-ready medical device.

The Nanomix researchers developed their nanotube transistor as part of NSF’s Small Business Innovation Research program, and they are also applying the new technology to optoelectronic memory applications.

The same electronic interactions between polymers and carbon nanotubes that sense CO2 can also yield photo-sensitive devices that record the binary "on" and "off" patterns of digital memory. The memory is written optically, but read and erased electronically.

When researchers shine light on the polymer-coated nanotube transistors, electric signals are stored as charges in the nanotubes. Because different polymers absorb light differently, engineers can tune the device to work under specific light waves. By changing the voltage in the device, one can control the read and erase functions.

These research results, which were published in the September issue of Nano Letters, differ from other memory and optical applications of nanotube transistors.

Comments from the researchers:

"We have developed nanoelectronic sensors that accurately measure carbon dioxide in human breath. This sensing technology will break new ground in the development of medical devices that take advantage of the unique qualities of nanotechnology – small size, low power and high sensitivity." -- Alexander Star, Manager, Applications Development, Nanomix, Inc. "We are using two-layer nanodevice assembly, which allows us to control each component to change the operation of the devices. While the nanotube layer defines the density and complexity of nanodevice arrays on the chip, we can independently fine-tune the devices by using different polymers." -- Alexander Star

Comments from UCSF:

"Being able to continuously and accurately measure carbon dioxide in exhaled breath with a small, inexpensive and pre-calibrated device is a very significant development in clinical care. It will improve emergency care in the field by helping guide resuscitation efforts and also provide important feedback about adequacy of ventilation. " -- Philip E. Bickler, Department of Anesthesia and Perioperative Care, University of California, San Francisco

Comments from NSF:

"The potential impact of this device is huge. This technology could lead to a low-cost, small-size, low-power carbon dioxide sensor. The high-sensitivity device might replace bulky and expensive NDIR (non-dispersive infrared absorption) sensors." -- Winslow Sargeant, NSF Small Business Innovation Research Program officer who oversees the Nanomix award. "This is a high-risk, high-return technology. On a larger scale, the finalized product would lower the cost of respiratory track monitoring, becoming an essential tool for intensive care units and during anesthesia." -- Winslow Sargeant

Josh Chamot | NSF News
Further information:
http://www.nsf.gov

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>