Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New magnetic percutaneous system navigates vessels

08.11.2004


A new magnetic navigation system shows promise for use during percutaneous coronary interventions (PCI), researchers reported at the American Heart Association’s Scientific Sessions 2004.



"The computer-controlled magnetic system is useful to steer guide wires and navigate turns in tortuous coronary arteries that would otherwise be impossible to negotiate," said study co-author Neal S. Kleiman, M.D., director of cardiac catheterization laboratories at the Methodist DeBakey Heart Center and associate professor of medicine at Baylor College of Medicine in Houston, Texas.

The magnetic-assisted intervention is being introduced in the United States and Europe, with fewer than 15 systems installed at institutions worldwide. Developed by Stereotaxis, Inc., a St. Louis firm, the system was approved by the U.S. Food and Drug Administration in 2003.


The researchers presented a study of the first 26 patients who underwent 31 magnetic-assisted interventions (MAI) at the Methodist DeBakey Heart Center, leading to a high success rate. The three-dimensional system is installed in the center’s catherization laboratory.

The system consists of two permanent magnets that generate a magnetic field over the heart and a magnet-tipped coronary guide wire. The magnetic navigation involves interaction between the magnetic field of specified direction and magnitude, positioned externally to the patient, and a tiny magnet in the tip of the interventional device. An automatic advancement system controls the catheter advancement and retraction.

Kleiman said the magnetic system is useful in patients with difficult lesions who are undergoing a coronary intervention, such as balloon angioplasty. He said the more tortuous the vessel, the more difficult it is to place the wire manually.

"About 20 percent of patients treated with the magnetic system were poor candidates for standard angioplasty or had already failed the standard procedure," Kleiman said. "These are the patients who can benefit from the magnetic navigation system." However, he noted that the magnetic system is not for use in every case.

Cardiology fellow Satya Reddy Atmakuri, M.D., lead author of the study, reported that 26 male and female patients, with an average age of 64, were selected because of their potentially difficult to cross lesions during angioplasty.

Fifty-four percent of the patients had diabetes mellitus, a patient population especially vulnerable to cardiovascular disease that often has tortuous vessels.

The study found that most stenoses (48 percent) were in the circumflex coronary artery (which supplies the back wall of the heart and usually poses a challenge to the interventionalist because of its many bends and sharp angles) and its branches, 22.5 percent were in the left anterior descending artery (which supplies the front wall of the heart) and 20 percent were in the right coronary artery. Saphenous vein grafts represented 10 percent.

The target lesion was successfully crossed using MAI in 28 of 31 lesions, a 90 percent success rate, Atmakuri said. Two lesions were successfully crossed with the wire, but the balloon could not cross the lesion, leading to a success rate of 84 percent.

Kleiman said the magnetic navigation system has the potential to allow coronary interventions to be done more quickly than conventional guide wire techniques. Its major advantage is the ability to treat tortuous vessels.

"Just how broad a niche this technique will occupy is not yet clear," Kleiman said. He said there is a steep learning curve, but the intervention will become easier to use with experience and upgraded software.

Co-authors are cardiology fellow Eli I. Lev, M.D., and Albert E. Raizner, M.D., director of The Methodist DeBakey Heart Center.

Carole Bullock | EurekAlert!
Further information:
http://www.heart.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>