Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New magnetic percutaneous system navigates vessels

08.11.2004


A new magnetic navigation system shows promise for use during percutaneous coronary interventions (PCI), researchers reported at the American Heart Association’s Scientific Sessions 2004.



"The computer-controlled magnetic system is useful to steer guide wires and navigate turns in tortuous coronary arteries that would otherwise be impossible to negotiate," said study co-author Neal S. Kleiman, M.D., director of cardiac catheterization laboratories at the Methodist DeBakey Heart Center and associate professor of medicine at Baylor College of Medicine in Houston, Texas.

The magnetic-assisted intervention is being introduced in the United States and Europe, with fewer than 15 systems installed at institutions worldwide. Developed by Stereotaxis, Inc., a St. Louis firm, the system was approved by the U.S. Food and Drug Administration in 2003.


The researchers presented a study of the first 26 patients who underwent 31 magnetic-assisted interventions (MAI) at the Methodist DeBakey Heart Center, leading to a high success rate. The three-dimensional system is installed in the center’s catherization laboratory.

The system consists of two permanent magnets that generate a magnetic field over the heart and a magnet-tipped coronary guide wire. The magnetic navigation involves interaction between the magnetic field of specified direction and magnitude, positioned externally to the patient, and a tiny magnet in the tip of the interventional device. An automatic advancement system controls the catheter advancement and retraction.

Kleiman said the magnetic system is useful in patients with difficult lesions who are undergoing a coronary intervention, such as balloon angioplasty. He said the more tortuous the vessel, the more difficult it is to place the wire manually.

"About 20 percent of patients treated with the magnetic system were poor candidates for standard angioplasty or had already failed the standard procedure," Kleiman said. "These are the patients who can benefit from the magnetic navigation system." However, he noted that the magnetic system is not for use in every case.

Cardiology fellow Satya Reddy Atmakuri, M.D., lead author of the study, reported that 26 male and female patients, with an average age of 64, were selected because of their potentially difficult to cross lesions during angioplasty.

Fifty-four percent of the patients had diabetes mellitus, a patient population especially vulnerable to cardiovascular disease that often has tortuous vessels.

The study found that most stenoses (48 percent) were in the circumflex coronary artery (which supplies the back wall of the heart and usually poses a challenge to the interventionalist because of its many bends and sharp angles) and its branches, 22.5 percent were in the left anterior descending artery (which supplies the front wall of the heart) and 20 percent were in the right coronary artery. Saphenous vein grafts represented 10 percent.

The target lesion was successfully crossed using MAI in 28 of 31 lesions, a 90 percent success rate, Atmakuri said. Two lesions were successfully crossed with the wire, but the balloon could not cross the lesion, leading to a success rate of 84 percent.

Kleiman said the magnetic navigation system has the potential to allow coronary interventions to be done more quickly than conventional guide wire techniques. Its major advantage is the ability to treat tortuous vessels.

"Just how broad a niche this technique will occupy is not yet clear," Kleiman said. He said there is a steep learning curve, but the intervention will become easier to use with experience and upgraded software.

Co-authors are cardiology fellow Eli I. Lev, M.D., and Albert E. Raizner, M.D., director of The Methodist DeBakey Heart Center.

Carole Bullock | EurekAlert!
Further information:
http://www.heart.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>