Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New magnetic percutaneous system navigates vessels

08.11.2004


A new magnetic navigation system shows promise for use during percutaneous coronary interventions (PCI), researchers reported at the American Heart Association’s Scientific Sessions 2004.



"The computer-controlled magnetic system is useful to steer guide wires and navigate turns in tortuous coronary arteries that would otherwise be impossible to negotiate," said study co-author Neal S. Kleiman, M.D., director of cardiac catheterization laboratories at the Methodist DeBakey Heart Center and associate professor of medicine at Baylor College of Medicine in Houston, Texas.

The magnetic-assisted intervention is being introduced in the United States and Europe, with fewer than 15 systems installed at institutions worldwide. Developed by Stereotaxis, Inc., a St. Louis firm, the system was approved by the U.S. Food and Drug Administration in 2003.


The researchers presented a study of the first 26 patients who underwent 31 magnetic-assisted interventions (MAI) at the Methodist DeBakey Heart Center, leading to a high success rate. The three-dimensional system is installed in the center’s catherization laboratory.

The system consists of two permanent magnets that generate a magnetic field over the heart and a magnet-tipped coronary guide wire. The magnetic navigation involves interaction between the magnetic field of specified direction and magnitude, positioned externally to the patient, and a tiny magnet in the tip of the interventional device. An automatic advancement system controls the catheter advancement and retraction.

Kleiman said the magnetic system is useful in patients with difficult lesions who are undergoing a coronary intervention, such as balloon angioplasty. He said the more tortuous the vessel, the more difficult it is to place the wire manually.

"About 20 percent of patients treated with the magnetic system were poor candidates for standard angioplasty or had already failed the standard procedure," Kleiman said. "These are the patients who can benefit from the magnetic navigation system." However, he noted that the magnetic system is not for use in every case.

Cardiology fellow Satya Reddy Atmakuri, M.D., lead author of the study, reported that 26 male and female patients, with an average age of 64, were selected because of their potentially difficult to cross lesions during angioplasty.

Fifty-four percent of the patients had diabetes mellitus, a patient population especially vulnerable to cardiovascular disease that often has tortuous vessels.

The study found that most stenoses (48 percent) were in the circumflex coronary artery (which supplies the back wall of the heart and usually poses a challenge to the interventionalist because of its many bends and sharp angles) and its branches, 22.5 percent were in the left anterior descending artery (which supplies the front wall of the heart) and 20 percent were in the right coronary artery. Saphenous vein grafts represented 10 percent.

The target lesion was successfully crossed using MAI in 28 of 31 lesions, a 90 percent success rate, Atmakuri said. Two lesions were successfully crossed with the wire, but the balloon could not cross the lesion, leading to a success rate of 84 percent.

Kleiman said the magnetic navigation system has the potential to allow coronary interventions to be done more quickly than conventional guide wire techniques. Its major advantage is the ability to treat tortuous vessels.

"Just how broad a niche this technique will occupy is not yet clear," Kleiman said. He said there is a steep learning curve, but the intervention will become easier to use with experience and upgraded software.

Co-authors are cardiology fellow Eli I. Lev, M.D., and Albert E. Raizner, M.D., director of The Methodist DeBakey Heart Center.

Carole Bullock | EurekAlert!
Further information:
http://www.heart.org

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>