Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new treatment for T-cell acute lymphoblastic leukaemia?

10.09.2004


IL-7, a hormone-like protein involved in cell-cell interaction, has been associated with increased survival and expansion of T-cell acute lymphoblastic leukaemia (T-ALL). Now, in the latest issue of the Journal of Experimental Medicine, a team of scientists, not only confirms the essential role of this protein in the disease but also, for the first time, identifies the biochemical pathway affected by IL-7 in T-ALL cells, a discovery which could lead to the development of potential new treatments for the disease.



Leukaemia is a type of blood cancer which originates from an uncontrolled growth of abnormal cells in the bone marrow (usually the white blood cells/lymphocytes). This results in very little space left for the growth of normal cells which leads to a weakened immune system. In the case of acute leukaemia the filling of the bone marrow space is extremely fast and the disease needs immediate treatment or the patient will die.

Leukaemia affects 4 out of every 100,000 people worldwide and is the most common childhood cancer. In the United States alone, every year, more than 2,000 children and almost 27,000 adults are diagnosed with the disease.


Cytokines, such as IL-7, are powerful chemical substances secreted usually, but not only, by the immune system to transmit information/instructions between cells. IL-7 is a potent growth factor for immune cells and is indispensable for normal T-cell development. Several studies have also suggested that IL-7 was involved in T-cell acute lymphoblastic leukaemia’s growth although there was no information on the mechanism(s) behind this effect.

João Barata, Angelo Cardoso, Vassiliki Boussiotis and colleagues at the Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston and at the Tumour Biology Unit, Institute of Molecular Medicine, University of Lisbon, Portugal studied T-ALL cells cultured in the presence of IL-7 trying to understand, not only the real importance of this cytokine in the disease, but also the biochemical mechanism through which IL-7 mediated its effect on T-ALL.

In this paper, the team of researchers describe how they identify, for the first time, the cellular pathway in T-ALL cells which is affected by IL-7 (the pathway identified is called PI3K/Akt(PKB)), an information that can now help scientists in the search for new treatments for the disease.

Barata, Cardoso, Boussiotis and colleagues also discovered that IL-7 affects T-ALL metabolism, increasing energy production in T-ALL cells which results in increased cell division and, ultimately, tumour growth. The team of scientists found as well, that IL-7 presence induces an increase in T-ALL cell size. Interestingly, both phenomena have been previously associated with the induction of cancer.

These results confirmed the role of IL-7 in T-ALL growth and activation and led the team of scientists to suggest that this cytokine is indispensable for T-ALL biology which further highlights the unique importance of IL-7 as a potentially therapeutic target.

Barata, Cardoso, Boussiotis and colleagues write: ”Our results implicate PI3K as a major effector of IL-7-induced viability, metabolic activation, growth and proliferation of T-ALL cells, and suggest that PI3K and its downstream effectors may represent molecular targets for therapeutic intervention in T-ALL.”

Understanding the mechanism behind disease is the first step towards a better treatment with higher efficacy and fewer secondary effects. Leukaemia, like all cancers, is still mostly treated by chemo- and radio-therapy treatments which destroy both cancerous and healthy cells and any alternative therapy that can replace or at least supplement these extremely invasive and not always effective treatments is always good news for patients and doctors alike.

Catarina Amorim | alfa
Further information:
http://www.oct.mct.pt

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>