Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering the basics for new kind of cancer vaccine

02.08.2004


Mayo Clinic and British researchers have developed a new approach to cancer vaccines that purposely kills healthy skin cells to target the immune system against tumors. The new approach has eradicated skin cancer tumors in mice. The approach and results challenge conventional thinking on the creation of cancer vaccines. Their report on the "heat shock" vaccine therapy appears in the August issue of Nature Biotechnology, Results are promising because multiple rounds of treatment eradicated skin cancer in all the mice in the study. If this work can be extended to humans, it could have enormous benefits. Skin cancer is currently the most common form of cancer in the United States, with an estimated one million new cases diagnosed annually.


Significance of the Mayo Clinic Research

Normally, the destruction of healthy cells is undesirable. For example, in toxic conventional chemotherapies for cancer, the goal is to kill cancer cells and spare healthy cells. This new approach is significant for two reasons:

1) It turns the death of healthy cells into a therapeutic advantage by inflicting a stress known as "inflammatory cell death" on skin cells to which researchers attached a protein involved in heat shock. Researchers were able to trigger a healing immune response aimed at the skin cancer tumors. The response was so strong it eradicated the tumors.



2) Researchers avoided triggering autoimmune attacks, which are a common disabling side effect of most cancer vaccine attempts. In autoimmune attacks the body attacks and injures itself -- instead of the cancer. This new approach appears to breach a major obstacle to advancing cancer vaccine research from the laboratory into human trials.

"We’re very encouraged by these results because our main interest is in generating cancer vaccines that will stimulate the immune system to recognize tumors and eradicate them. We hope our novel approach will be a more specific, and therefore gentler therapy for patients,’’ says Mayo immunologist and lead researcher Richard Vile, Ph.D.

Background

To test the idea that killing normal cells might trigger a specific immune system response, the team chose normal skins cells called melanocytes that are involved in the highly lethal cancer malignant melanoma. The researchers created a molecular scout to home in on and kill some of the melanocytes in mice. To the molecular scout they attached an unusual protein, called heat shock protein 70, or hsp70. It normally is not present in healthy cells, but when cells die under certain conditions, they release hsp70. "It’s a danger-signal system that the body is in trouble," says Dr. Vile. "We hoped to trigger an anti-tumor response."

The unanticipated result was a two-step reaction with promising traits that may one day help skin cancer patients. In the first step, the heat shock protein recruited T cells -- the main warriors of the immune system -- that attacked melanocytes. The T cells killed all tumors in the mice.

Researchers also questioned whether a raging T-cell attack might prompt autoimmune disease. The immune system apparently anticipated that. In response to the vaccine, it sent out regulatory T cells to calm down the first group of fighting T cells.

Says Dr. Vile: "The nice twist is that originally we thought we would generate a very potent autoimmune disease before we killed the tumor. But we found just the opposite. What happens is that you get a burst of T cells that kill the melanoma, and then they are suppressed by regulatory T cells in the mouse before they cause autoimmune disease."

For humans, this is good news. "This is very hopeful because we think in the clinic there are good chances we can control anti-tumor effects before we get to the autoimmune problems," says Dr. Vile.

The Next Step

The researchers will pursue two basic paths. One will extend the current work on a heat shock vaccine to other tissue and tumor types to determine its effectiveness against breast, lung or prostate cancers. The other is to test this immunotherapy in clinical trials with humans.

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>