Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Misfiring proteins tied to inflammation and sick feeling of type 2 diabetics


After a series of studies in the laboratory of Dr. Gregory Freund, a clearer picture is emerging: A disruption of signaling proteins in the immune system may be responsible for the inflammation that makes someone with type 2 diabetes feel sick and increases the risk of serious complications.

Freund, the head of the pathology department in the University of Illinois College of Medicine at Urbana-Champaign and a professor of animal sciences in the College of Agricultural, Consumer and Environmental Sciences, is pursuing the theory that inflammation is tied to a disturbance of signal-carrying cytokines.

Type 2 diabetes – once considered an adult-onset disease – is an increasing problem alongside obesity, even among teenagers. Some 18 million Americans suffer from diabetes, with more than 90 percent being type 2, according to the Centers for Disease Control. The disease costs some $98 billion a year to treat and is the nation’s sixth leading cause of death – usually because of resulting cardiovascular and other complications.

The disease is initially characterized by high levels of insulin in the blood, a condition known as hyperinsulinemia, and insulin resistance, whereby cells refuse to let insulin inside. When that happens, the ability to regulate glucose levels is compromised. A mechanism thought to be a major player in the onset of insulin resistance, Freund said, is serine phosphorylation, triggered by hyperinsulinemia, of the insulin receptor substrates.

This phosphorylation, Freund said, “impacts other signaling cascades in cells, controlled by cytokines, especially ones like interleukin 4, an anti-inflammatory protein.”

A connection to the cytokine IL-4 was documented by Freund and colleagues in a study published July 2 in the Journal of Biological Chemistry.

They found that IL-4 signaling was impaired when they tested macrophages (a type of white blood cells) removed from type 2 diabetic mice. The research – funded by National Institutes of Health, American Heart Association, American Diabetes Assocation and University of Illinois Agricultural Experiment Station – followed similar findings, presented two years ago in the same journal, based on experiments in cell lines.

“In our first paper, we treated cells with insulin in a test tube,” Freund said. “In our new paper, we took the macrophages from diabetic animals and looked at the signaling abilities of the insulin receptor substrate 2, and, lo and behold, we indeed saw reduced signaling function.”

Freund’s co-authors on the new paper were Matthew E. Hartman, Jason C. O’Connor and Jonathan P. Godbout, all of animal sciences; Kyle D. Minor, a first-year medical student; and undergraduate biology-honors student Valerie R. Mazzocco.

New work in Freund’s lab shows that cytokine-dependent fever and reduced social exploration is found in type 2 diabetes mice. The neuroimmune response leading to the sickness behavior, Freund said, was linked to hypersensitivity to lipopolysaccharide and potentially to cytokine resistance.

Now Freund is asking what this signaling breakdown in the insulin receptor substrate does in patients. “Such knowledge would be applicable to many other diseases that involve inflammation and subsequent illness behavior,” he said.

The growing list of findings has led to a five-year $1.56 million grant, which was awarded to Freund in March by the NIH’s National Institute of Diabetes and Digestive and Kidney Diseases. Co-investigators are Robert Dantzer, a professor of animal sciences, and Jeffrey A. Woods, a professor of kinesiology.

There are three goals of the newly funded research, Freund said:

Determine the physiological relevance of the brain-immune interactions that occur in type 2 diabetes;

Identify mechanisms that cause the diabetic pro-inflammatory state to inappropriately augment lipopolysaccharide-induced fever and sickness behavior;

Determine if a potential new drug combination could improve neuroimmune function in diabetic mice.

That potential therapy is based on yet another recent discovery in Freund’s lab. Vanadyl sulfate, which now is used to reduce blood sugar content, improves insulin signaling and insulin-dependent glucose uptake in skeletal muscle in mice and speeds recovery from lipopolysaccharide-induced sickness behavior.

Freund theorizes that combining vanadyl sulfate with rapamycin, a drug used to lower the risk of rejection of transplanted kidneys, might reduce diabetes-associated inflammation and stabilize brain-immune system interactions.

Jim Barlow | University of Illinois
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>