Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method enables researchers to make human SARS antibodies quickly

12.07.2004


Human antibodies that thwart the SARS virus in mice can be mass-produced quickly using a new laboratory technique developed by an international research team collaborating with the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health. The new technique could become an important tool for developing a cocktail of SARS-specific antibodies that might help protect people recently exposed to the SARS virus or at high risk of exposure. The technique could also make possible the development of a similar approach to prevent or treat other illnesses, such as HIV/AIDS and hepatitis C.



The report describing these findings appears in the July 11, 2004, online issue of Nature Medicine.

"While much has been accomplished in our quest for a vaccine against SARS, a vaccine may provide little benefit to someone already infected," says Anthony S. Fauci, M.D., director of NIAID. "Human SARS antibodies could offer a double benefit: they could be used as a potent frontline defense for health care workers and others at high risk of exposure and as an effective treatment for those individuals newly exposed to the virus." Currently, there is no specific effective treatment for SARS.


SARS is caused by a coronavirus, a family of viruses named for their spiky, crown-like appearance. Highly contagious, SARS typically begins with flu-like symptoms, such as fever, headache and muscle aches, and generally progresses to pneumonia. In the 2003 global outbreak, more than 8,000 people were infected with SARS, 9 percent of whom died. In April 2004, a small outbreak in China is suspected to have begun as a result of negligent laboratory practices.

In the current study, Elisabetta Traggiai, Ph.D., and Antonio Lanzavecchia, M.D., from the Institute for Research in Biomedicine, Bellinzona, Switzerland, together with an international research team, generated human antibodies against SARS far more quickly and efficiently than with current methods. Moreover, collaborators Kanta Subbarao, M.D., and Brian Murphy, M.D., both in NIAID’s Laboratory of Infectious Diseases, demonstrated for the first time that these human SARS antibodies, when injected into mice, effectively prevent the virus from multiplying in the respiratory system.

"The antibodies from people who have recovered from SARS may target different parts of the virus than antibodies generated by other animals, such as mice," says Dr. Subbarao. "For this reason, human antibodies--antibodies from recovered patients that may have a proven effectiveness in fighting the disease--are considered most desirable for a possible serotherapy against SARS."

Antibodies are made by special immune system cells called B cells that, to do their job, must first be switched on. In nature, this occurs when the body encounters a new or repeat foreign "invader." In the laboratory, researchers conventionally accomplish this by exposing the B cells to Epstein Barr virus (EBV), a herpes virus that infects B cells, which in turn activates them. Unfortunately, this process is very inefficient, and only one or two B cells out of one hundred are activated this way.

Dr. Lanzavecchia and his research team added a new ingredient to the mix that significantly boosts efficiency. Beginning with B cells from a recovered SARS patient, the researchers added a short stretch of synthetic DNA that mimics DNA found in bacteria and viruses. From 30 to 100 percent of the B cells--in this case called "memory" B cells because they had been exposed to the SARS virus before--were switched back on, enabling them to churn out SARS antibodies at a fast pace. In only a few weeks, the researchers screened hundreds of antibodies and obtained 35 that could neutralize the SARS virus in the laboratory. All the neutralizing antibodies targeted a key SARS protein, the spike protein, found on the virus surface.

Furthermore, when Drs. Subbarao and Murphy injected one of the neutralizing antibodies into mice, they found that these antibodies effectively thwarted the SARS virus from multiplying in the lower respiratory tract, which includes the lungs, and, to a lesser extent, in the upper respiratory tract, which includes the nasal cavity. According to Dr. Subbarao, these results are very promising because replication of SARS in the lungs of humans can result in pneumonia.

A primary benefit of the new activation technique is that it generates a large pool of prospective antibodies from which to choose, so only the most effective SARS fighters can be chosen for use in a possible immune serum. Because viruses can mutate, however, more than one antibody will most likely be needed to achieve the optimal protection or treatment, the researchers contend.

The researchers’ next goal is to find additional antibodies against the SARS virus, focusing on those that attach most readily to the virus, are most potent against the virus, and can attach to more than one site on the spike protein. Before the antibodies might be made available for clinical use, researchers need to test them for their effectiveness in other laboratory animals, such as non-human primates, as well as in human clinical trials.

Jennifer Wenger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>