Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method enables researchers to make human SARS antibodies quickly

12.07.2004


Human antibodies that thwart the SARS virus in mice can be mass-produced quickly using a new laboratory technique developed by an international research team collaborating with the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health. The new technique could become an important tool for developing a cocktail of SARS-specific antibodies that might help protect people recently exposed to the SARS virus or at high risk of exposure. The technique could also make possible the development of a similar approach to prevent or treat other illnesses, such as HIV/AIDS and hepatitis C.



The report describing these findings appears in the July 11, 2004, online issue of Nature Medicine.

"While much has been accomplished in our quest for a vaccine against SARS, a vaccine may provide little benefit to someone already infected," says Anthony S. Fauci, M.D., director of NIAID. "Human SARS antibodies could offer a double benefit: they could be used as a potent frontline defense for health care workers and others at high risk of exposure and as an effective treatment for those individuals newly exposed to the virus." Currently, there is no specific effective treatment for SARS.


SARS is caused by a coronavirus, a family of viruses named for their spiky, crown-like appearance. Highly contagious, SARS typically begins with flu-like symptoms, such as fever, headache and muscle aches, and generally progresses to pneumonia. In the 2003 global outbreak, more than 8,000 people were infected with SARS, 9 percent of whom died. In April 2004, a small outbreak in China is suspected to have begun as a result of negligent laboratory practices.

In the current study, Elisabetta Traggiai, Ph.D., and Antonio Lanzavecchia, M.D., from the Institute for Research in Biomedicine, Bellinzona, Switzerland, together with an international research team, generated human antibodies against SARS far more quickly and efficiently than with current methods. Moreover, collaborators Kanta Subbarao, M.D., and Brian Murphy, M.D., both in NIAID’s Laboratory of Infectious Diseases, demonstrated for the first time that these human SARS antibodies, when injected into mice, effectively prevent the virus from multiplying in the respiratory system.

"The antibodies from people who have recovered from SARS may target different parts of the virus than antibodies generated by other animals, such as mice," says Dr. Subbarao. "For this reason, human antibodies--antibodies from recovered patients that may have a proven effectiveness in fighting the disease--are considered most desirable for a possible serotherapy against SARS."

Antibodies are made by special immune system cells called B cells that, to do their job, must first be switched on. In nature, this occurs when the body encounters a new or repeat foreign "invader." In the laboratory, researchers conventionally accomplish this by exposing the B cells to Epstein Barr virus (EBV), a herpes virus that infects B cells, which in turn activates them. Unfortunately, this process is very inefficient, and only one or two B cells out of one hundred are activated this way.

Dr. Lanzavecchia and his research team added a new ingredient to the mix that significantly boosts efficiency. Beginning with B cells from a recovered SARS patient, the researchers added a short stretch of synthetic DNA that mimics DNA found in bacteria and viruses. From 30 to 100 percent of the B cells--in this case called "memory" B cells because they had been exposed to the SARS virus before--were switched back on, enabling them to churn out SARS antibodies at a fast pace. In only a few weeks, the researchers screened hundreds of antibodies and obtained 35 that could neutralize the SARS virus in the laboratory. All the neutralizing antibodies targeted a key SARS protein, the spike protein, found on the virus surface.

Furthermore, when Drs. Subbarao and Murphy injected one of the neutralizing antibodies into mice, they found that these antibodies effectively thwarted the SARS virus from multiplying in the lower respiratory tract, which includes the lungs, and, to a lesser extent, in the upper respiratory tract, which includes the nasal cavity. According to Dr. Subbarao, these results are very promising because replication of SARS in the lungs of humans can result in pneumonia.

A primary benefit of the new activation technique is that it generates a large pool of prospective antibodies from which to choose, so only the most effective SARS fighters can be chosen for use in a possible immune serum. Because viruses can mutate, however, more than one antibody will most likely be needed to achieve the optimal protection or treatment, the researchers contend.

The researchers’ next goal is to find additional antibodies against the SARS virus, focusing on those that attach most readily to the virus, are most potent against the virus, and can attach to more than one site on the spike protein. Before the antibodies might be made available for clinical use, researchers need to test them for their effectiveness in other laboratory animals, such as non-human primates, as well as in human clinical trials.

Jennifer Wenger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>