Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Technology And Dental Techniques Combine In New Cancer Detector

25.06.2004


A new generation of gamma cameras is on the horizon, thanks to a collaboration between the BioImaging Unit of the Space Research Centre at the University of Leicester, the Institute for Cancer Research at the Royal Marsden Hospital (Surrey) and medical physicists at the Leicester Royal Infirmary.

Dr John Lees, who leads the BioImaging Unit, is developing the new camera using funding from the University’s seedcorn fund, Lachesis. It will be a small, affordable hand-held device, producing higher resolution images than those currently in use. The camera uses novel technology based on Charged Coupled Devices (CCDs), which have been used in X-ray astronomy for many years and are also used in dental X-ray imagers.

Gamma imagers are used to view tumours and lymph nodes in patients, but those available at present are large, expensive items of equipment which do not produce high resolution images. The smaller imagers which Dr Lees is developing can be used alongside the bigger gamma cameras, in order to focus more closely on a tumour or other medical condition.



The Leicester BioImaging Unit will use radioisotopes (radionuclides) to image different areas in the body. This field of nuclear medicine is increasing and offers a number of benefits to oncology doctors, which the new imagers will maximise.

The key advantage of the high resolution gamma imager is that it will help to minimise investigative surgery in certain circumstances, avoiding the associated trauma and costs.

It is applicable to a wide range of radioisotope imaging used in diagnosis and patient monitoring. Its affordability will mean that hospitals of the future could buy several gamma cameras and extend their use to, for instance, monitoring the effectiveness of a course of chemotherapy.

The new High Resolution Gamma Imager applies an additional scintillation layer to the standard dental CCD, so that it can be used as a gamma ray imager. The aim is to develop the device into a hand-held gamma camera that could generate images of areas injected with the accepted radionuclide marker for gamma imaging.

Dr John Lees commented: “It is exciting that a camera developed originally for X-ray astronomy will be used in the fight against cancer.”

This non-invasive device monitors the spatial distribution of radiolabel uptake in the human body. It has applications in the evaluation of cancer staging, the imaging of bone lesions; veterinary medicine and non-destructive testing and environmental monitoring. In the first of these areas, several oncologists have already expressed strong interest in the capabilities of the imager.

The Lachesis Fund, which has supported the High Resolution Gamma Imager research, has recently grown to a total of £7M, following a contribution of £3M from the East Midlands Development Agency (emda). The fund has supported 22 spin-out companies and commercial ventures in East Midlands universities, and the new injection of funds will allow it to maintain this level of support over the coming years.

Professor William Brammar, Pro-Vice-Chancellor at the University of Leicester, said: ‘The high resolution gamma imager is an exciting example of the potential in bringing high quality physics and engineering to applications in the biomedical area. Progress in biology and medicine depend crucially on the development of more powerful and sophisticated instrumentation. I am delighted that the Lachesis Fund has been enhanced to enable it to support developments of this kind’.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>