Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Technology And Dental Techniques Combine In New Cancer Detector

25.06.2004


A new generation of gamma cameras is on the horizon, thanks to a collaboration between the BioImaging Unit of the Space Research Centre at the University of Leicester, the Institute for Cancer Research at the Royal Marsden Hospital (Surrey) and medical physicists at the Leicester Royal Infirmary.

Dr John Lees, who leads the BioImaging Unit, is developing the new camera using funding from the University’s seedcorn fund, Lachesis. It will be a small, affordable hand-held device, producing higher resolution images than those currently in use. The camera uses novel technology based on Charged Coupled Devices (CCDs), which have been used in X-ray astronomy for many years and are also used in dental X-ray imagers.

Gamma imagers are used to view tumours and lymph nodes in patients, but those available at present are large, expensive items of equipment which do not produce high resolution images. The smaller imagers which Dr Lees is developing can be used alongside the bigger gamma cameras, in order to focus more closely on a tumour or other medical condition.



The Leicester BioImaging Unit will use radioisotopes (radionuclides) to image different areas in the body. This field of nuclear medicine is increasing and offers a number of benefits to oncology doctors, which the new imagers will maximise.

The key advantage of the high resolution gamma imager is that it will help to minimise investigative surgery in certain circumstances, avoiding the associated trauma and costs.

It is applicable to a wide range of radioisotope imaging used in diagnosis and patient monitoring. Its affordability will mean that hospitals of the future could buy several gamma cameras and extend their use to, for instance, monitoring the effectiveness of a course of chemotherapy.

The new High Resolution Gamma Imager applies an additional scintillation layer to the standard dental CCD, so that it can be used as a gamma ray imager. The aim is to develop the device into a hand-held gamma camera that could generate images of areas injected with the accepted radionuclide marker for gamma imaging.

Dr John Lees commented: “It is exciting that a camera developed originally for X-ray astronomy will be used in the fight against cancer.”

This non-invasive device monitors the spatial distribution of radiolabel uptake in the human body. It has applications in the evaluation of cancer staging, the imaging of bone lesions; veterinary medicine and non-destructive testing and environmental monitoring. In the first of these areas, several oncologists have already expressed strong interest in the capabilities of the imager.

The Lachesis Fund, which has supported the High Resolution Gamma Imager research, has recently grown to a total of £7M, following a contribution of £3M from the East Midlands Development Agency (emda). The fund has supported 22 spin-out companies and commercial ventures in East Midlands universities, and the new injection of funds will allow it to maintain this level of support over the coming years.

Professor William Brammar, Pro-Vice-Chancellor at the University of Leicester, said: ‘The high resolution gamma imager is an exciting example of the potential in bringing high quality physics and engineering to applications in the biomedical area. Progress in biology and medicine depend crucially on the development of more powerful and sophisticated instrumentation. I am delighted that the Lachesis Fund has been enhanced to enable it to support developments of this kind’.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>