Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover genetic marker responsible for two-fold increase in risk of rheumatoid arthritis

24.06.2004


A team of researchers has discovered a genetic variation that doubles the risk for rheumatoid arthritis (RA). The variation, referred to as a single nucleotide polymorphism (SNP, pronounced "snip"), is present in about 28 percent of individuals with rheumatoid arthritis and 17 percent of the general population. This discovery resulted from a collaboration between scientists from the North American Rheumatoid Arthritis Consortium (NARAC), led by Peter K. Gregersen, MD, of the North Shore-Long Island Jewish Research Institute in Manhasset, NY, Celera Diagnostics and Genomics Collaborative, Inc. The team’s findings are being published in the August 2004 issue of the American Journal of Human Genetics.



"This is an important discovery, really a major genetic variant identified in a U.S. study that clearly seems to be involved in rheumatoid arthritis," said Stephen I. Katz, MD, PhD, director of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the lead agency at the National Institutes of Health (NIH) that supports NARAC.

While scientists still do not know the exact cause of RA, they do know it is an autoimmune disease in which the body’s natural immune system does not function properly and attacks its own healthy joint tissues. This causes inflammation and subsequent joint damage.


The SNP they linked to RA is located in a gene that codes for an enzyme (called PTPN22) that is known to be involved in controlling the activation of immune cells called T cells. Under normal conditions, the enzyme works as a "negative regulator" --- meaning it inactivates a specific signaling molecule, which in turn interrupts the communication lines and keeps immune cells from becoming overactive. In cases where the SNP is present in one or both copies of an individual’s genes for this enzyme, the team found that the negative regulation by this enzyme appears to be inefficient, so that T cells and other immune cells are hyperresponsive, causing increased inflammation and tissue damage.

"This is not an abnormal gene," said Dr. Gregersen. "It is present in a substantial fraction of the normal population, so it’s probably there for a good reason. It may, in fact, help defend against infection." When it comes to the genetics of complex diseases, context is everything. According to Dr. Gregersen, a genetic variant in the setting of certain environments and in the presence of other genes may have harmful effects, whereas the same genetic variant may have beneficial effects in another genetic and environmental context. "So this particular genetic variation may have contributed to the survival of our ancestors. The price we have to pay for that, however, is that some people are modestly predisposed to developing rheumatoid arthritis."

Using state-of-the-art technology developed by Celera Diagnostics, Ann B. Begovich, PhD, director of inflammation at Celera Diagnostics, and her team discovered the PTPN22 association. The technology allowed them -- in a short period of time -- to look at tens of thousands of SNPs in thousands of DNA samples from subjects with RA as well as normal control subjects. The majority of the DNA samples analyzed in this study were carefully collected from families with RA who contributed to the NARAC project. Genomics Collaborative, Inc. provided additional samples.

"This collaboration has enabled us to make a significant contribution to a very complex genetic problem in a relatively short period of time, something that can only be achieved with a team effort," said Dr. Begovich.

The Arthritis Foundation has been an important supporter of NARAC. "This critical discovery is an illustration of the power of public-private partnerships to solve complex issues," said John H. Klippel, MD, the foundation’s president and CEO.

Research has previously shown that autoimmune diseases such as type 1 diabetes, lupus and thyroid disease tend to group in families, but there has been no previous direct genetic connection to explain the phenomenon. Earlier this year, a study published in Nature Genetics linked this same SNP with type 1 diabetes. Subsequent unpublished research by Dr. Gregersen and his colleagues indicates that this particular gene variant may also increase risk for other autoimmune diseases, such as systemic lupus and autoimmune thyroid disease, as well as type 1 diabetes.

"NIH has provided strong scientific and financial support for the North American Rheumatoid Arthritis Consortium over many years, and we are now beginning to see the fruits of this investment," said Dr. Katz. "I expect this discovery will spin off many more advances in the field." In addition to NIAMS, the National Institute of Allergy and Infectious Diseases and the Office of Research on Women’s Health at the NIH also support NARAC.

Christina Verni | EurekAlert!
Further information:
http://www.nshs.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>