Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common ’signature’ found for different cancers

23.06.2004


Discovery yields hope for universal treatment

Researchers at the University of Michigan, Johns Hopkins and the Institute of Bioinformatics in India have discovered a gene-expression "signature" common to distinct types of cancer, renewing hope that a universal treatment for the nation’s second leading killer might be found.

Scientists essentially abandoned the search for a common approach to cancer therapy after research launched by the 1970s "War on Cancer" revealed the many varieties of cancer and the differences among even the same type of cancer in different people. As a result of these discoveries, the focus largely has been on tailoring treatments to specific forms of cancers and even to the precise biology of cancer in a particular person.



"Perhaps we’d learned so much about the differences among cancers that we stopped looking for the similarities. Not having the right tools to look for similarities on a global level didn’t help, either," says Akhilesh Pandey, assistant professor of biological chemistry in the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins and chief scientific advisor and founder of the Institute of Bioinformatics, a nonprofit institute located in Bangalore, India.

In the team’s hunt for an overall genetic signature of cancer, which could be useful for diagnosis as well as for developing therapies, the scientists mined a mind-boggling amount of raw information by first creating an online searchable database of 40 published data sets that had collectively analyzed the gene expression "fingerprints" of more than 3,700 cancer tissue samples.

Searching the collected data for common patterns of altered gene expression, the researchers uncovered a "signature" common to all cancers and another that distinguished some kinds of aggressive tumors from their less aggressive counterparts. Their report appears in the June 22 issue of the Proceedings of the National Academy of Sciences.

The signature consisted of 67 genes that were abnormally expressed in all cancers. These genes largely are involved in the cell’s preparation for division -- called the cell cycle -- and cell proliferation, the researchers report. Since cancers are characterized by uncontrolled cell division, the discovery is logical, even though it wasn’t easy, says Pandey.

"A lot of the available data on gene expression in cancers was just ’warehoused’ -- it was there, but not connected to anything," he says. "We took that data, analyzed it and connected it to relevant information. Now it’s both available and useful."

Pandey and staff at the Institute of Bioinformatics last year reported creation of the Human Protein Reference Database, an online, searchable, information-rich database of known human proteins and their interactions.

The new project, initiated by Arul Chinnaiyan, M.D., Ph.D., at Michigan, took a similar approach to the cancer problem by developing a way to statistically analyze microarray data and applying the new approach to data from microarray experiments on tumor samples.

Microarray experiments let researchers determine the expression of tens of thousands of genes all at once, providing a molecular "fingerprint" of the tissue sample. Scientists then compare the fingerprint of one sample to that of another -- a prostate tumor to normal prostate, or aggressive breast cancer to non-aggressive breast cancer -- to identify genes whose expression is higher or lower than "normal." The idea is that those genes may contribute to the two tissues’ differences.

The mounds of data these experiments create -- each identifying hundreds of gene candidates -- can be difficult to sift through. But for Chinnaiyan and the research team, the ease with which the data is created meant that a wealth of information about cancers’ genetic profiles already existed, although not in a single form or place.

Answering some critics who claim that experimental differences make microarray data virtually impossible to compare, Pandey says that the difficulty actually supports their results. "If some people consider these sets to be so different as to be incomparable, then anything that does turn out to be common to all of them seems pretty likely to be real," he suggests.

The researchers also validated their proposed cancer signature by examining data sets published after creation of the database, dubbed ONCOMINE. The same signature discriminated between cancer and normal tissue in seven of nine new data sets, including properly discriminating three types of cancer not used to create the database, the scientists report.

ONCOMINE connects the cancer microarray database to several sources of additional information, including the scientific literature, the Human Protein Reference Database and Online Inheritance in Man, the online catalog of all proven disease-gene connections. ONCOMINE is owned by the University of Michigan, and is available online to academic researchers free-of-charge following registration.

Authors on the report are Daniel Rhodes, Jianjun Yu, Radhika Varambally, Debashis Ghosh, Terrence Barrette and Chinnaiyan of the University of Michigan Medical School; Kalyan Shanker and Nandan Deshpande of the Institute of Bioinformatics; and Pandey of Johns Hopkins. Pandey does not receive compensation for his role as scientific adviser to the Institute of Bioinformatics.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>