Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common ’signature’ found for different cancers

23.06.2004


Discovery yields hope for universal treatment

Researchers at the University of Michigan, Johns Hopkins and the Institute of Bioinformatics in India have discovered a gene-expression "signature" common to distinct types of cancer, renewing hope that a universal treatment for the nation’s second leading killer might be found.

Scientists essentially abandoned the search for a common approach to cancer therapy after research launched by the 1970s "War on Cancer" revealed the many varieties of cancer and the differences among even the same type of cancer in different people. As a result of these discoveries, the focus largely has been on tailoring treatments to specific forms of cancers and even to the precise biology of cancer in a particular person.



"Perhaps we’d learned so much about the differences among cancers that we stopped looking for the similarities. Not having the right tools to look for similarities on a global level didn’t help, either," says Akhilesh Pandey, assistant professor of biological chemistry in the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins and chief scientific advisor and founder of the Institute of Bioinformatics, a nonprofit institute located in Bangalore, India.

In the team’s hunt for an overall genetic signature of cancer, which could be useful for diagnosis as well as for developing therapies, the scientists mined a mind-boggling amount of raw information by first creating an online searchable database of 40 published data sets that had collectively analyzed the gene expression "fingerprints" of more than 3,700 cancer tissue samples.

Searching the collected data for common patterns of altered gene expression, the researchers uncovered a "signature" common to all cancers and another that distinguished some kinds of aggressive tumors from their less aggressive counterparts. Their report appears in the June 22 issue of the Proceedings of the National Academy of Sciences.

The signature consisted of 67 genes that were abnormally expressed in all cancers. These genes largely are involved in the cell’s preparation for division -- called the cell cycle -- and cell proliferation, the researchers report. Since cancers are characterized by uncontrolled cell division, the discovery is logical, even though it wasn’t easy, says Pandey.

"A lot of the available data on gene expression in cancers was just ’warehoused’ -- it was there, but not connected to anything," he says. "We took that data, analyzed it and connected it to relevant information. Now it’s both available and useful."

Pandey and staff at the Institute of Bioinformatics last year reported creation of the Human Protein Reference Database, an online, searchable, information-rich database of known human proteins and their interactions.

The new project, initiated by Arul Chinnaiyan, M.D., Ph.D., at Michigan, took a similar approach to the cancer problem by developing a way to statistically analyze microarray data and applying the new approach to data from microarray experiments on tumor samples.

Microarray experiments let researchers determine the expression of tens of thousands of genes all at once, providing a molecular "fingerprint" of the tissue sample. Scientists then compare the fingerprint of one sample to that of another -- a prostate tumor to normal prostate, or aggressive breast cancer to non-aggressive breast cancer -- to identify genes whose expression is higher or lower than "normal." The idea is that those genes may contribute to the two tissues’ differences.

The mounds of data these experiments create -- each identifying hundreds of gene candidates -- can be difficult to sift through. But for Chinnaiyan and the research team, the ease with which the data is created meant that a wealth of information about cancers’ genetic profiles already existed, although not in a single form or place.

Answering some critics who claim that experimental differences make microarray data virtually impossible to compare, Pandey says that the difficulty actually supports their results. "If some people consider these sets to be so different as to be incomparable, then anything that does turn out to be common to all of them seems pretty likely to be real," he suggests.

The researchers also validated their proposed cancer signature by examining data sets published after creation of the database, dubbed ONCOMINE. The same signature discriminated between cancer and normal tissue in seven of nine new data sets, including properly discriminating three types of cancer not used to create the database, the scientists report.

ONCOMINE connects the cancer microarray database to several sources of additional information, including the scientific literature, the Human Protein Reference Database and Online Inheritance in Man, the online catalog of all proven disease-gene connections. ONCOMINE is owned by the University of Michigan, and is available online to academic researchers free-of-charge following registration.

Authors on the report are Daniel Rhodes, Jianjun Yu, Radhika Varambally, Debashis Ghosh, Terrence Barrette and Chinnaiyan of the University of Michigan Medical School; Kalyan Shanker and Nandan Deshpande of the Institute of Bioinformatics; and Pandey of Johns Hopkins. Pandey does not receive compensation for his role as scientific adviser to the Institute of Bioinformatics.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>