Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indoor Mold, Building Dampness Linked to Respiratory Problems and Require

26.05.2004


Better Prevention; Evidence Does Not Support Links to Wider Array of Illnesses



Scientific evidence links mold and other factors related to damp conditions in homes and buildings to asthma symptoms in some people with the chronic disorder, as well as to coughing, wheezing, and upper respiratory tract symptoms in otherwise healthy people, says a new report from the Institute of Medicine of the National Academies. However, the available evidence does not support an association between either indoor dampness or mold and the wide range of other health complaints that have been ascribed to them, the report says. Given the frequent occurrence of moisture problems in buildings and their links to respiratory problems, excessive indoor dampness should be addressed through a broad range of public health initiatives and changes in how buildings are designed, constructed, and maintained, said the committee that wrote the report.

"An exhaustive review of the scientific literature made it clear to us that it can be very hard to tease apart the health effects of exposure to mold from all the other factors that may be influencing health in the typical indoor environment," said committee chair Noreen Clark, dean, School of Public Health, University of Michigan, Ann Arbor. "That said, we were able to find sufficient evidence that certain respiratory problems, including symptoms in asthmatics who are sensitive to mold, are associated with exposure to mold and damp conditions. Even though the available evidence does not link mold or other factors associated with building moisture to all the serious health problems that some attribute to them, excessive indoor dampness is a widespread problem that warrants action at the local, state, and national levels."


Excessive dampness influences whether mold as well as bacteria, dust mites, and other such agents are present and thrive indoors. Moreover, wetness may cause chemicals and particles to be released from building materials. Many studies of health effects possibly related to indoor dampness do not distinguish the specific health effects of different biological or chemical agents.

Through its careful review of the available scientific studies, the committee found sufficient evidence to conclude that mold and damp conditions are associated with asthma symptoms in asthmatics who are sensitive to mold, and to coughing, wheezing, and upper respiratory tract symptoms in otherwise healthy people. However, the evidence did not meet the strict scientific standards needed to establish a clear, causal relationship. An uncommon ailment known as hypersensitivity pneumonitis also is associated with indoor mold exposure in genetically susceptible people. Damp conditions and all they entail may be associated with the onset of asthma, as well as shortness of breath and lower respiratory illness in otherwise healthy children, although the evidence is less certain in these circumstances. Likewise, the presence of visible mold indoors may be linked to lower respiratory tract illness in children, but the evidence is not as strong in this case.

The committee found very few studies that have examined whether mold or other factors associated with indoor dampness are linked to fatigue, neuropsychiatric disorders, or other health problems that some people have attributed to fungal infestations of buildings. The little evidence that is available does not support an association, but because of the dearth of well-conducted studies and reliable data, the committee could not rule out the possibility.

Studies on animals and cell cultures in labs have found toxic effects from various microbial agents, raising concerns about whether these same agents growing in buildings can cause illness in people. Molds that are capable of producing toxins do grow indoors, and toxic and inflammatory effects also can be caused by bacteria that flourish in damp conditions, the report noted. Little information exists on the toxic potential of chemicals or particles that may be released when building materials, furniture, and other items degrade because of wetness. The committee recommended that current animal studies of short-term, high-level inhalation exposures to microbial toxins be supplemented with new research that evaluates the effects of long-term exposures at lower concentrations.

Moisture and mold problems stem from building designs, construction and maintenance practices, and building materials in which wetness lingers. Technical information describing how to control dampness already exists, but architects, engineers, building contractors, facility managers, and maintenance staff do not always apply this knowledge, the report says. Training curricula on why dampness problems occur and how to prevent them should be produced and disseminated. Guidelines for preventing indoor dampness also should be developed at the national level to promote widespread adoption and to avoid the potential for conflicting advice from different quarters. In addition, building codes and regulations should be reviewed and modified as necessary to reduce moisture problems.

Research on various means to prevent or eliminate excessive dampness -- including educational initiatives and building renovations or design changes -- should be undertaken to find out which are effective. While there is universal agreement that promptly fixing leaks and cleaning up spills or standing water substantially reduces the potential for mold growth, there is little evidence that shows which forms of moisture control or prevention work best at reducing health problems associated with dampness, the report notes. In addition, materials designed to educate the public about the actual health risks associated with indoor dampness should be developed and evaluated. The effectiveness of economic and other incentives to spur adherence to moisture prevention practices -- such as bonuses for facility managers who meet defined goals for preventing or reducing problems, or fines for failure to correct problems by a specified deadline -- should be evaluated, and successful strategies should be implemented.

The committee had insufficient information to recommend either an appropriate level of dampness reduction, or a safe level of exposure to organisms and chemicals linked to dampness. Better standardized methods for assessing human exposure to these agents are greatly needed, the report says. It calls for studies that compare various ways to limit moisture or eliminate mold and to evaluate whether the interventions improve occupants’ health.

The study was sponsored by the Centers for Disease Control and Prevention. The Institute of Medicine is a private, nonprofit institution that provides health policy advice under a congressional charter granted to the National Academy of Sciences. A committee roster follows.

Christine Stencel | The National Academies
Further information:
http://www4.nationalacademies.org/news.nsf/isbn/0309091934?OpenDocument

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>