Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Scientists Identify New Way To Block Blood Vessels That Feed Cancer Growth

21.05.2004


Scientists from Duke University Medical Center have identified the "master switch" that cancer cells use to dispatch protective messages to nearby blood vessels, fortifying the vessels against deadly onslaughts of radiation.



The messages enable blood vessels to survive and ultimately nourish any remaining cancer cells that escape toxic radiation therapy.

Radiation biologists from the Duke Comprehensive Cancer Center identified the master switch as a protein called "Hypoxia Inducible Factor" (HIF-1) that turns on production of these protective messages.


They suppressed HIF-1 with experimental drugs given together with radiation therapy in animals with cancer. In doing so, they successfully inhibited blood vessel growth in tumors and, thereby, the growth of tumors themselves.

The Duke scientists hope to test this potential new therapy plus radiation in humans within the very near future. Results of their current findings are reported in the May, 2004, issue of Cancer Cell.

"HIF-1 is the switch inside cancer cells that gets turned on by radiation therapy," said Mark Dewhirst, Ph.D., DVM, professor of radiation oncology at Duke and principal investigator of the study. "Once it is activated, HIF-1 then triggers the production of well-known growth factors such as VEGF and bFGF, as well as more than forty different protein signals that regulate tumor metabolism, metastasis and angiogenesis." Angiogenesis is the process by which cancer cells grow new blood vessels to nourish and sustain themselves.

"By blocking the master switch, we effectively blocked many of the proteins which promote angiogenesis," said Dewhirst.

The Duke discovery follows dozens of recent developments in the field of anti-angiogenesis, in which scientists have attempted to block specific proteins that give rise to or protect tumor-feeding blood vessels.

The most noteworthy success has been Avastin, the first drug to be approved by the FDA to suppress angiogenesis in patients with spreading colorectal cancer. Avastin inhibits the protein VEGF and has been shown to extend patients’ lives when taken together with chemotherapy.

Dewhirst and first author Benjamin Moeller said their technique of suppressing HIF-1 expression could, theoretically, be a more potent inhibitor of blood vessel survival than the current approach of just suppressing a single protein, such as VEGF.

"We’re employing a treatment strategy where we accomplish two hits -- killing the cancer cells with radiation and blocking their blood vessel survival with an anti-HIF drug," said Moeller, a graduate student in the Duke M.D./Ph.D. program. "By pinpointing and blocking the source of all the signals, we have successfully halted the cancerous blood vessel growth in animals without harming normal blood vessels."

Approximately half of all cancer patients in the U.S. are treated with radiation therapy. However, the success of therapy depends largely on how sensitive a tumor’s blood vessels are to radiation. If blood vessels in the tumor survive after radiation, they can provide nutrients to the surviving cancer cells to begin rebuilding the tumor.

Thus, knowing how HIF-1 works inside cancer cells is critical to manipulating its behavior and making its blood vessels more responsive to radiation, said Moeller.

It is already known that radiation boosts oxygen levels inside cancer cells. In the new study, Moeller demonstrated that the infusion of oxygen releases pent-up RNA, the genetic blueprint molecule, for HIF-1 protein which is bound up in tiny particles called stress granules. The oxygen disintegrates these stress granules and allows HIF-1 to be produced and to engage in production of growth factors.

Secondarily, the infusion of oxygen produces "reactive oxygen species" -- also known as oxygen free radicals -- inside cancer cells. Reactive oxygen species were also shown to boost HIF-1 production, the study showed.

"Tumors so desperately seek to protect themselves against radiation that they have two completely different mechanisms for boosting HIF-1 regulated gene production to protect their blood vessels," said Dewhirst. The team’s unexpected findings shift the accepted paradigm of how HIF-1 works inside cancer cells and provides major insight into how HIF-1 regulates angiogenesis after radiation therapy, he said.

"We’ve known that oxygen levels and blood vessel growth inside tumors are two major influences on how a tumor responds to radiation and chemotherapy," said Dewhirst. "Now we’ve shown for the first time that HIF-1 is a major target we could block in combination with radiation therapy or any other therapies that causes oxygen levels to rise after treatment."

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7618

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>