Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Scientists Identify New Way To Block Blood Vessels That Feed Cancer Growth

21.05.2004


Scientists from Duke University Medical Center have identified the "master switch" that cancer cells use to dispatch protective messages to nearby blood vessels, fortifying the vessels against deadly onslaughts of radiation.



The messages enable blood vessels to survive and ultimately nourish any remaining cancer cells that escape toxic radiation therapy.

Radiation biologists from the Duke Comprehensive Cancer Center identified the master switch as a protein called "Hypoxia Inducible Factor" (HIF-1) that turns on production of these protective messages.


They suppressed HIF-1 with experimental drugs given together with radiation therapy in animals with cancer. In doing so, they successfully inhibited blood vessel growth in tumors and, thereby, the growth of tumors themselves.

The Duke scientists hope to test this potential new therapy plus radiation in humans within the very near future. Results of their current findings are reported in the May, 2004, issue of Cancer Cell.

"HIF-1 is the switch inside cancer cells that gets turned on by radiation therapy," said Mark Dewhirst, Ph.D., DVM, professor of radiation oncology at Duke and principal investigator of the study. "Once it is activated, HIF-1 then triggers the production of well-known growth factors such as VEGF and bFGF, as well as more than forty different protein signals that regulate tumor metabolism, metastasis and angiogenesis." Angiogenesis is the process by which cancer cells grow new blood vessels to nourish and sustain themselves.

"By blocking the master switch, we effectively blocked many of the proteins which promote angiogenesis," said Dewhirst.

The Duke discovery follows dozens of recent developments in the field of anti-angiogenesis, in which scientists have attempted to block specific proteins that give rise to or protect tumor-feeding blood vessels.

The most noteworthy success has been Avastin, the first drug to be approved by the FDA to suppress angiogenesis in patients with spreading colorectal cancer. Avastin inhibits the protein VEGF and has been shown to extend patients’ lives when taken together with chemotherapy.

Dewhirst and first author Benjamin Moeller said their technique of suppressing HIF-1 expression could, theoretically, be a more potent inhibitor of blood vessel survival than the current approach of just suppressing a single protein, such as VEGF.

"We’re employing a treatment strategy where we accomplish two hits -- killing the cancer cells with radiation and blocking their blood vessel survival with an anti-HIF drug," said Moeller, a graduate student in the Duke M.D./Ph.D. program. "By pinpointing and blocking the source of all the signals, we have successfully halted the cancerous blood vessel growth in animals without harming normal blood vessels."

Approximately half of all cancer patients in the U.S. are treated with radiation therapy. However, the success of therapy depends largely on how sensitive a tumor’s blood vessels are to radiation. If blood vessels in the tumor survive after radiation, they can provide nutrients to the surviving cancer cells to begin rebuilding the tumor.

Thus, knowing how HIF-1 works inside cancer cells is critical to manipulating its behavior and making its blood vessels more responsive to radiation, said Moeller.

It is already known that radiation boosts oxygen levels inside cancer cells. In the new study, Moeller demonstrated that the infusion of oxygen releases pent-up RNA, the genetic blueprint molecule, for HIF-1 protein which is bound up in tiny particles called stress granules. The oxygen disintegrates these stress granules and allows HIF-1 to be produced and to engage in production of growth factors.

Secondarily, the infusion of oxygen produces "reactive oxygen species" -- also known as oxygen free radicals -- inside cancer cells. Reactive oxygen species were also shown to boost HIF-1 production, the study showed.

"Tumors so desperately seek to protect themselves against radiation that they have two completely different mechanisms for boosting HIF-1 regulated gene production to protect their blood vessels," said Dewhirst. The team’s unexpected findings shift the accepted paradigm of how HIF-1 works inside cancer cells and provides major insight into how HIF-1 regulates angiogenesis after radiation therapy, he said.

"We’ve known that oxygen levels and blood vessel growth inside tumors are two major influences on how a tumor responds to radiation and chemotherapy," said Dewhirst. "Now we’ve shown for the first time that HIF-1 is a major target we could block in combination with radiation therapy or any other therapies that causes oxygen levels to rise after treatment."

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7618

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>