Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Considerable Reductions’ in Radiation Exposure Possible with 16-MDCT Scanner on Body Applications

03.05.2004


By using a 16-slice scanner as opposed to a 4-slice scanner, considerable reductions in effective radiation dose can be achieved on body CT without sacrificing established clinical image quality levels, a new study by researchers from Leiden University Medical Center in Leiden, The Netherlands, says.



Specifically, the authors state that by using carefully optimized volumetric imaging protocols with 16-MDCT (multidetector computed tomography), a dose reduction of 20–30% can be achieved in standard protocols on normal-sized patients, even without the incorporation of automatic exposure control software. “Much of this is due to the better geometric and detector efficiency of the 16-slice CT units, which is expected to continue with the further improvement in efficiency with the coming 32 to 64–slice units,” said Aart J. van der Molen, MD, lead author of the study.

In fact, according to Dr. van der Molen, not only can lower radiation doses be achieved with 16-MDCT, the imaging itself can even be improved at that lower radiation level. “With 16-MDCT, one can trade through-plane resolution for noise (scan thin, view thicker). This is often not optimally possible using 4-MDCT because of the long breath-holds and low geometric efficiency at very thin slices. So the overall clinical imaging quality, especially when taking the coronal and sagittal orientations into account, can be improved with a 16-slice CT scanner at a reduced dose level,” he said.


According to the authors, their findings do not completely rule out the use of 4-MDCT for body applications, but they do recommended 16-MDCT for body CT in the most important regions (chest, abdomen and pelvis), if the technology is at hand. “In hospitals that have both technologies available, this opens up the possibility to scan patient groups that have a higher risk for detrimental effects of radiation, such as children, with the most dose-efficient equipment available,” said Dr. van der Molen.

Dr. van der Molen will present the study on May 3 during the American Roentgen Ray Society Annual Meeting in Miami Beach, FL.

Jason Ocker | ARRS
Further information:
http://www.arrs.org/scriptcontent/pressroom/archive/2004/r040503b.cfm

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>