Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Considerable Reductions’ in Radiation Exposure Possible with 16-MDCT Scanner on Body Applications

03.05.2004


By using a 16-slice scanner as opposed to a 4-slice scanner, considerable reductions in effective radiation dose can be achieved on body CT without sacrificing established clinical image quality levels, a new study by researchers from Leiden University Medical Center in Leiden, The Netherlands, says.



Specifically, the authors state that by using carefully optimized volumetric imaging protocols with 16-MDCT (multidetector computed tomography), a dose reduction of 20–30% can be achieved in standard protocols on normal-sized patients, even without the incorporation of automatic exposure control software. “Much of this is due to the better geometric and detector efficiency of the 16-slice CT units, which is expected to continue with the further improvement in efficiency with the coming 32 to 64–slice units,” said Aart J. van der Molen, MD, lead author of the study.

In fact, according to Dr. van der Molen, not only can lower radiation doses be achieved with 16-MDCT, the imaging itself can even be improved at that lower radiation level. “With 16-MDCT, one can trade through-plane resolution for noise (scan thin, view thicker). This is often not optimally possible using 4-MDCT because of the long breath-holds and low geometric efficiency at very thin slices. So the overall clinical imaging quality, especially when taking the coronal and sagittal orientations into account, can be improved with a 16-slice CT scanner at a reduced dose level,” he said.


According to the authors, their findings do not completely rule out the use of 4-MDCT for body applications, but they do recommended 16-MDCT for body CT in the most important regions (chest, abdomen and pelvis), if the technology is at hand. “In hospitals that have both technologies available, this opens up the possibility to scan patient groups that have a higher risk for detrimental effects of radiation, such as children, with the most dose-efficient equipment available,” said Dr. van der Molen.

Dr. van der Molen will present the study on May 3 during the American Roentgen Ray Society Annual Meeting in Miami Beach, FL.

Jason Ocker | ARRS
Further information:
http://www.arrs.org/scriptcontent/pressroom/archive/2004/r040503b.cfm

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>