Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Considerable Reductions’ in Radiation Exposure Possible with 16-MDCT Scanner on Body Applications

03.05.2004


By using a 16-slice scanner as opposed to a 4-slice scanner, considerable reductions in effective radiation dose can be achieved on body CT without sacrificing established clinical image quality levels, a new study by researchers from Leiden University Medical Center in Leiden, The Netherlands, says.



Specifically, the authors state that by using carefully optimized volumetric imaging protocols with 16-MDCT (multidetector computed tomography), a dose reduction of 20–30% can be achieved in standard protocols on normal-sized patients, even without the incorporation of automatic exposure control software. “Much of this is due to the better geometric and detector efficiency of the 16-slice CT units, which is expected to continue with the further improvement in efficiency with the coming 32 to 64–slice units,” said Aart J. van der Molen, MD, lead author of the study.

In fact, according to Dr. van der Molen, not only can lower radiation doses be achieved with 16-MDCT, the imaging itself can even be improved at that lower radiation level. “With 16-MDCT, one can trade through-plane resolution for noise (scan thin, view thicker). This is often not optimally possible using 4-MDCT because of the long breath-holds and low geometric efficiency at very thin slices. So the overall clinical imaging quality, especially when taking the coronal and sagittal orientations into account, can be improved with a 16-slice CT scanner at a reduced dose level,” he said.


According to the authors, their findings do not completely rule out the use of 4-MDCT for body applications, but they do recommended 16-MDCT for body CT in the most important regions (chest, abdomen and pelvis), if the technology is at hand. “In hospitals that have both technologies available, this opens up the possibility to scan patient groups that have a higher risk for detrimental effects of radiation, such as children, with the most dose-efficient equipment available,” said Dr. van der Molen.

Dr. van der Molen will present the study on May 3 during the American Roentgen Ray Society Annual Meeting in Miami Beach, FL.

Jason Ocker | ARRS
Further information:
http://www.arrs.org/scriptcontent/pressroom/archive/2004/r040503b.cfm

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>