Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein promotes cancer metastasis and survival

20.04.2004


A new study demonstrates that a protein called periostin promotes deadly spreading and late stage progression of colon cancer. The research results demonstrate that periostin promotes metastatic growth of colon cancer by activating signaling molecules that encourage cell survival and identify the protein as a potential therapeutic target for the control of colon cancer.



Colorectal cancer commonly metastasizes to the liver and is the second leading cause of death from cancer in the United States. As with most cancers, it is the metastasis and not the primary tumor that is responsible for cancer fatality. However, the complex mechanisms associated with tumor metastasis are not very well understood. Dr. Xiao-Fan Wang from Duke University Medical Center and colleagues searched for genes associated with metastatic tumors in samples from primary and metastatic colon cancers and found that periostin was highly expressed in metastatic tumors. When periostin was introduced into human colon cancer cells grown in the laboratory, the cells were much more likely to metastasize to the liver when subsequently introduced into mice. The researchers went on to show that the underlying molecular mechanism for periostin-mediated tumor metastasis is related to an increase in survival of cancer and blood vessel cells under stressful conditions.

The researchers conclude that periostin plays a critical role in the progression of colon cancers and may be involved in metastasis of other cancers as well. "Metastasis accounts for the majority of the mortality associated with colorectal cancer, making control of metastasis an attractive treatment goal," explains Dr. Wang. "Our findings identify periostin as a potent promoter of late stage tumor progression. It is likely that periostin and similar types of proteins enable tumor cells to thrive in distant organs and grow under conditions that normally would be inhospitable. Targeting these proteins may prove to be a highly effective strategy for preventing late-stage progression of deadly metastatic cancers."



Shideng Bao, Gaoliang Ouyang, Xuefang Bai, Zhi Huang, Chaoyu Ma, Ming Liu, Rong Shao, Ryan M. Anderson, Jeremy N. Rich, and Xiao-Fan Wang: "Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway"

Published in Cancer Cell, Volume 5, Number 4, April 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>