Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein promotes cancer metastasis and survival

20.04.2004


A new study demonstrates that a protein called periostin promotes deadly spreading and late stage progression of colon cancer. The research results demonstrate that periostin promotes metastatic growth of colon cancer by activating signaling molecules that encourage cell survival and identify the protein as a potential therapeutic target for the control of colon cancer.



Colorectal cancer commonly metastasizes to the liver and is the second leading cause of death from cancer in the United States. As with most cancers, it is the metastasis and not the primary tumor that is responsible for cancer fatality. However, the complex mechanisms associated with tumor metastasis are not very well understood. Dr. Xiao-Fan Wang from Duke University Medical Center and colleagues searched for genes associated with metastatic tumors in samples from primary and metastatic colon cancers and found that periostin was highly expressed in metastatic tumors. When periostin was introduced into human colon cancer cells grown in the laboratory, the cells were much more likely to metastasize to the liver when subsequently introduced into mice. The researchers went on to show that the underlying molecular mechanism for periostin-mediated tumor metastasis is related to an increase in survival of cancer and blood vessel cells under stressful conditions.

The researchers conclude that periostin plays a critical role in the progression of colon cancers and may be involved in metastasis of other cancers as well. "Metastasis accounts for the majority of the mortality associated with colorectal cancer, making control of metastasis an attractive treatment goal," explains Dr. Wang. "Our findings identify periostin as a potent promoter of late stage tumor progression. It is likely that periostin and similar types of proteins enable tumor cells to thrive in distant organs and grow under conditions that normally would be inhospitable. Targeting these proteins may prove to be a highly effective strategy for preventing late-stage progression of deadly metastatic cancers."



Shideng Bao, Gaoliang Ouyang, Xuefang Bai, Zhi Huang, Chaoyu Ma, Ming Liu, Rong Shao, Ryan M. Anderson, Jeremy N. Rich, and Xiao-Fan Wang: "Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway"

Published in Cancer Cell, Volume 5, Number 4, April 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>