Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT aims radar research at breast cancer

16.04.2004


A breast cancer treatment based on MIT radar research that was originally aimed at detecting space-borne missiles is showing promise in the final phase of clinical testing.

Preliminary results to be presented on Wednesday, April 21 at the 9th International Congress on Hyperthermic Oncology in St. Louis show that women with early-stage breast cancer who received the MIT treatment prior to lumpectomy had a 43 percent reduction in the incidence rate of cancer cells found close to the surgical margins. This is important because additional breast surgery and/or radiation therapy are often recommended for patients that have cancer cells close to the edge of the lumpectomy surgical margin.

"One of the primary objectives of this randomized study is to demonstrate that heat can affect and kill early-stage breast cancer cells prior to surgery," said William C. Dooley, director of surgical oncology at the University of Oklahoma Breast Institute and principal investigator of the ongoing study. "With this focused heat treatment, it may be possible for the surgeon to provide better margins for the patient and possibly avoid additional treatment procedures and avoid recurrence of the cancer."



Since October 2002, 90 women with early-stage breast cancer have enrolled in the study, in which microwave energy focused externally on the breast is delivered to tumors prior to lumpectomy. The goal is to use focused heat to kill tumor cells and reduce additional surgery (see earlier story at http://web.mit.edu/newsoffice/nr/2000/fenn.html). The current results are based on the 64 women who have completed the study.

Treating cancer with heat is not a new idea, but "researchers were having trouble using it to treat tumors deep within the body," said Alan Fenn, a senior staff member at MIT Lincoln Laboratory and inventor of the technique. Further, it’s difficult to deliver the heat only to cancer cells and not overheat normal tissue.

The microwaves in the new technique "heat--and kill--cells containing high amounts of water," he said. Cancer cells have a high water content (around 80 percent), while healthy breast tissue contains much less.

The outpatient procedure uses a single tiny needle probe to sense and measure parameters during treatment. Side effects appear to be minimal.

Patients in the thermotherapy group of the current study receive a minimally invasive heat treatment prior to surgery and radiation therapy, while patients in the control group receive surgery alone prior to radiation therapy. Preliminary results indicate that in the thermotherapy group, 5 of 30 (16.7%) patients had tumor cells close to the surgical margins, whereas in the group receiving surgery alone, 10 of 34 (29.4%) patients had tumor cells close to the margin.

The women participating in this ongoing clinical trial are being treated at the University of Oklahoma in Oklahoma City, Harbor-UCLA Medical Center, the Comprehensive Breast Center in Coral Springs, Fla., the Mroz-Baier Breast Care Clinic in Memphis, Tenn., and several other breast centers in the United States.

Previous Phase II, or dose-escalation, results of the breast cancer heat treatment were reported in the February 2004 issue of the Annals of Surgical Oncology. The data for breast cancer patients treated in the dose-escalation trial were submitted to the U.S. Food and Drug Administration to support allowance to proceed with the randomized trial currently underway.

Celsion Corp. exclusively licenses the focused microwave thermotherapy technology from MIT. The company has developed the clinical thermotherapy system and is funding the current clinical studies. The Department of the Air Force funded the original MIT Lincoln Laboratory research by Fenn.

Denise Brehm | MIT
Further information:
http://web.mit.edu/newsoffice/www
http://web.mit.edu/newsoffice/nr/2000/fenn.html

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Serious children’s infections also spreading in Switzerland

26.07.2017 | Health and Medicine

Biomarkers for identifying Tumor Aggressiveness

26.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>