Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists seek light-activated glue for vascular repair

31.03.2004


Surgeons battle time and the body’s defenses as they stitch together veins and arteries, whether after an injury or in the course of such treatments as transplants or bypasses. Loss of blood before a site is closed and too much clotting soon after challenge medical care.

Virginia Tech researchers are creating biocompatible adhesives for use with vascular tissue that will speed the process of mending tissue. They will present the research at the 227th annual meeting of the American Chemical Society in Anaheim, Calif., March 28 through April 1, 2004.

The goal is to make it possible for surgeons to splice, reattach, or mend vascular tissue by applying a biopolymer coating and activating it with light, such as a laser, explains Timothy Long of Blacksburg, professor of chemistry in the College of Science at Virginia Tech. Another use would be as a stable, easy-to-use material that medics could apply to stop bleeding and prevent clotting.



Chemistry doctoral student Afia S. Karikari will explain the structure and characteristics of the novel polymer, how light causes it to change shape and function, and what the researchers have determined about the properties of several compounds that are candidates for a material that could make laser assisted vascular repair possible.

Karikari, a Packard Fellow, is a graduate of Clark Atlanta University. A native of Ghana, West Africa, she moved to the United States with her family and attended Pebblebrook High School in Mableton, Ga.

She will present the paper, "Photocrosslinking of star-shaped poly(d,l-lactide)s containing an ethoxylate core (Poly 368)" at 8:50 a.m. Tuesday, March 30, 2004, in the Garden B room of the Anaheim Coast Hotel. Co-authors are Craig Thatcher, professor and department head of large animal clinical sciences in the Virginia–Maryland Regional College of Veterinary Medicine, and Long.


Contact for more information: Dr. Timothy E. Long at telong@vt.edu or 540-231-2480
Learn more about Ms Karikari at http://www.technews.vt.edu/Archives/2001/Oct/01395.html

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/
http://www.technews.vt.edu/Archives/2001/Oct/01395.html

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>