Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making smart drugs that deliver the right kind of punch

24.03.2004


It’s a bitter irony of cancer therapy: treatments powerful enough to kill tumor cells also harm healthy ones, causing side effects that diminish the quality of the lives that are saved.


Nanoparticles depicted here among cells (green) show potential as targeted anti-cancer therapeutics.
Image: Paul Trombley, University of Michigan Center for Biologic Nanotechnology



Researchers at the University of Michigan’s Center for Biologic Nanotechnology hope to prevent that problem by developing "smart" drug delivery devices that will knock out cancer cells with lethal doses, leaving normal cells unharmed, and even reporting back on their success. A graduate student involved in the multidisciplinary project will discuss her recent work---zeroing in on characteristics that make the devices most effective---at a meeting of the American Physical Society in Montreal, Quebec, March 23.

The U-M group is using lab-made molecules called dendrimers, also known as nanoparticles, as the backbones of their delivery system. Dendrimers are tiny spheres whose width is ten thousand times smaller than the thickness of a human hair, explains physics doctoral student Almut Mecke. "These spheres have all sorts of loose ends where you can attach things---for example, a targeting agent that can recognize a cancer cell and distinguish it from a healthy cell. You can also attach the drug that actually kills the cancer cells. If you have both of these functions on the same molecule, then you have a smart drug that knows which cells to attack."


Mecke’s part of the project focuses on finding out how to get dendrimers into cancer cells without disrupting healthy cells. Previous work had shown that high concentrations of dendrimers are toxic---even without their cancer drug cargo---but no one was sure why that was or what could be done about it. Mecke used an atomic force microscope---a device so sensitive it can take pictures of single molecules---to spy on interactions between dendrimers and membranes similar to those that surround living cells.

The atomic force microscope is something like a phonograph with a motion detector attached to its needle. "As the tip moves across the surface, you can detect its movement each time it hits a bump," Mecke said. "If you scan the surface, line by line, and you record the motion of the tip, you get a three-dimensional image of the surface," where each bump is an individual molecule. By taking a series of pictures and putting them together into a movie, Mecke could watch dendrimers in action. What she saw was that "certain kinds of dendrimers disrupt membranes by literally punching holes in them."

That wasn’t the kind of punch the researchers wanted to deliver, so they tried tinkering with the dendrimers to see if they could prevent the damage. "Dendrimers usually have a charge, and so do cell membranes," Mecke said. "It’s the interaction between those charges that causes dendrimers to bind to cell membranes and disrupt them. What our group found is that if you modify the surface of the dendrimers chemically, they become uncharged" and no longer beat up on membranes.

Other research at the center showed that charged dendrimers are just as likely to enter healthy cells as cancer cells---a habit that makes them undesirable for cancer therapy---but that uncharged dendrimers don’t invade cells at all unless they have cancer-detecting targeting agents attached. "We can show that, with the targeting molecule attached, an uncharged dendrimer goes into cancer cells---and only cancer cells---and that’s what we want," Mecke said.

Early results of studies with mice show that the nanoparticle drugs do treat cancer effectively with fewer side effects than conventional chemotherapy drugs, just as the researchers had hoped. "It’s nice to see how everything fits together---my work with the model membrane, my colleague’s work with cell culture and other people’s work with the animal studies," Mecke said. Next, the researchers hope to add more functions to their dendrimer-drug devices, such as biosensors that can report on cancer cell death, indicating how successful a particular treatment has been.

Mecke collaborated on the work with U-M researchers Seungpyo Hong, a graduate student in the macromolecular science and engineering center; Anna Bielinska, a research investigator at the Center for Biologic Nanotechnology; Mark Banaszak Holl, associate professor of chemistry; Bradford Orr, professor of physics; and professor James Baker, director of the Center for Biologic Nanotechnology. Funding was provided by the National Cancer Institute’s Unconventional Innovations Program. The study is one of several major research programs under way in the U-M Center for Biologic Nanotechnology---a multi-disciplinary group that focuses on biologic applications of nanomaterials. Baker, the Ruth Dow Doan Professor of Biologic Nanotechnology in the U-M Medical School, is the study’s principal investigator.

Nancy Ross Flanigan | University of Michigan
Further information:
http://www.umich.edu/news/index.html?Releases/2004/Mar04/r032304

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>