Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat: It isn’t always bad for the heart

02.03.2004


Unwanted fat may have a bigger effect on the heart than physicians previously thought.



Researchers at the Indiana University School of Medicine have discovered that cells in human fat actually may help the body grow new blood vessels to repair both muscle and heart tissue. These cells, called stromal cells, are immature fat cells. Their findings are reported in the March 1 online issue of Circulation, the scientific journal of the American Heart Association.

Jalees Rehman, M.D., principal author of the paper and a fellow at IU’s Krannert Institute of Cardiology and the Indiana Center for Vascular Biology and Medicine, said fat may be a "renewable resource" for individuals with poor circulation. Although he does not promote obesity, Dr. Rehman said stromal cells have properties that can have a therapeutic effect on individuals with heart disease, chronic angina, leg cramping and other conditions caused by poor circulation.


"A lot of people can grow their own blood vessels and when they have blockages in their arteries, their bodies naturally compensate," said Dr. Rehman. "People who cannot grow blood vessels are the ones who may benefit from this research. An example would be individuals who have severe chest pains from angina, which is caused by reduced blood flow to the heart."

Another key group of individuals that could benefit from delivery of their own readily available stromal cells are those with legs cramps or those who are facing leg amputations due to poor circulation, said Dr. Rehman.

Fat contains large numbers of stromal cells, which have stem cell-like properties, said Keith L. March, M.D., Ph.D., principal investigator of the study and director of the Indiana Center for Vascular Biology and Medicine and Cryptic Masons Medical Research Foundation Professor.

Stem cells are nature’s building blocks for tissue and are most commonly found for medical purposes in bone marrow and umbilical cord blood. In addition to their stem cell-like properties, stromal cells in fat tissue make significant amounts of growth factors that enhance angiogenesis, the natural growth of blood vessels.

Drs. Rehman, March and the IU team identified several growth factors found in the stromal cells which cause the angiogenic effect.

Scientists worldwide are actively seeking factors that control angiogenesis to develop treatments for heart disease, stroke and dementias. Cancer researchers also are interested in controlling angiogenesis to stop the growth of blood vessels that feed malignant tumors.

"Of particular interest to the team was the way we predict the cells will react in the body," said Dr. March. "These cells release even more growth factors when placed in low oxygen conditions similar to those experienced by patients with poor circulation."

Dr. Rehman said the team called the cells "intelligent factories" because they can sense a need for more blood vessels and begin "manufacturing" the substances necessary to make those vessels.

"Instead of treating patients with a single growth factor, you could treat them by strategically placing their own stromal cells which respond to low oxygen and adapt to that need," said Dr. Rehman.

"For instance, if an individual who has impaired blood flow to the heart climbs a flight of stairs every day, his body will sense a need for more oxygen to the heart and the stromal cells would respond by releasing more growth factors."

"The process wouldn’t work overnight but with time they would produce needed blood vessels to supply oxygen to the heart or to the legs," said Dr. March. "Stromal cell treatment ideally would allow the bodies of individuals with impaired circulation to compensate in the same way as the bodies of people who can grow their own blood vessels."

Other than the obvious health advantages, patients may find the treatment beneficial because the easiest way to collect the stromal cells is through standard liposuction. Patients may find the treatment slimming long before they gain the cardiovascular health to make workouts feasible.

Mary Hardin | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>