Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skin regeneration not isolated to epidermal stem cells

03.02.2004


The outermost layer of the skin – the epidermis – is a rapidly renewing tissue and relies on the regenerative capacity of keratinocytes. Skin grafts using human cultured epidermal cells have been successful in treating patients with severe skin wounds. The notion that the ability to regenerate functional epidermal tissue is an exclusive property of epidermal stem cells is a general assumption in the stem cell biology field. In the February 2 issue of the Journal of Clinical Investigation, Pritinder Kaur and colleagues at the Peter MacCallum Cancer Centre, Australia, demonstrate that both epidermal stems cells and their early, differentiated progeny contribute to rapid epidermal regeneration.



The majority of proliferating epidermal cells, also known as transit-amplifying cells, at the inner-most layer of the skin have a finite life span and undergo rapid terminal differentiation. Therefore it is well accepted that the extensive regenerative capacity of the skin is most likely attributed to the activity of epidermal stem cells.

To determine the cells responsible for rapid epidermal regeneration, Kaur and colleagues separated epidermal stem cells from their progeny and assayed the ability of both cell types to regenerate epidermal tissue in both in vitro and in vivo settings. As expected, keratinocyte stem cells displayed robust regenerative capabilities, but unexpectedly, transit-amplifying cells and early differentiating cells, which are more committed progenitor cells, could also form a fully stratified epidermis under appropriate microenvironmental conditions. The authors also demonstrated that the regenerative capacity of these cell types could be enhanced by exposure to the protein laminin-10/11.


This work presents important new considerations for the expansion of keratinocyte progenitor cell populations for therapies that require large numbers of epidermal cells, such as those required for the treatment of severe wounds such as extensive burns. It may be possible to harness the vast proliferative potential of readily available and accessible keratinocyte progenitors of the skin for cellular therapies, thereby removing the need for difficult and limited stem cell selection.


TITLE: Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny

AUTHOR CONTACT:
Pritinder Kaur
Peter MacCallum Cancer Centre, Melbourne, Australia.
Phone: 61-3-9656-3714
Fax: 61-3-9656-3738
E-mail: pritinder.kaur@petermac.org

View the PDF of this article at: https://www.the-jci.org/press/19140.pdf

Brooke Grindlinger | EurekAlert!
Further information:
http://www.the-jci.org/press/19140.pdf

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>