Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists restore crucial myelin in brains of mice

14.01.2004


Scientists for the first time have restored a crucial substance known as myelin in a widespread area of an animal’s brain, opening the door toward new ways to improve treatment of an assortment of "demyelinating" diseases as well as the side effects of such common conditions as high blood pressure and heart disease. The research by a team led by Steven Goldman, M.D., Ph.D., of the University of Rochester Medical Center, is in the January issue of Nature Medicine.



Using human brain cells, Goldman’s team was able to restore proper nerve function in nearly the entire brains of mice much more efficiently than has been done previously. While the work is years away from a clinical study in humans, it serves as a milestone for researchers seeking to use stem cells and related cells known as progenitors to treat human disease.

"The results are much better than we expected," says Goldman, who is professor of Neurology and chief of the department’s Division of Cell and Gene Therapy at Rochester. "The percentage of cells in this experiment that began producing myelin is extraordinary, probably thousands of times as many as in previous experiments."


The work has implications for a wide variety of children’s diseases known as pediatric leukodystrophies, where the myelin is damaged or doesn’t work correctly, such as Canavan disease, Krabbe disease, or Tay-Sachs disease.

"While these diseases are generally rare, there are a lot of them, and together they affect thousands of children and their families," says Goldman. "We’ve got a long ways to go, but we’re optimistic that these findings could make a difference in the lives of these patients."

The work focuses on myelin, the fatty substance that covers nearly all the nerve cells in our bodies – like insulation wrapped around a wire – and helps signals in the nervous system go from one point to another. When the myelin breaks down, as in multiple sclerosis or the leukodystrophies, electrical signals degrade. It’s as if a crisp and clear phone conversation between two people speaking on land lines suddenly becomes patchy, sporadic and intermittent, as if they were speaking on cell phones in a hilly area. The net result can be dementia, difficulty walking, trouble breathing – a problem with any normal activity, depending on which parts of the brain or nervous system are affected.

The team remyelinated the mice – restored the "insulation" to the brain cells– by injecting into the mice highly purified human "progenitor" cells, which ultimately evolve into the cells that make myelin. These cells are known as oligodendrocytes: While these and other types of glial cells aren’t as well known as information-processing brain cells called neurons, they are vital to the brain’s health.

"Neurons get all the press, but glial cells are crucial to our health," says Goldman.

The team studied 44 mice that were born without any myelin wrapped around their brain cells. Within 24 hours of their birth, scientists injected cells that become oligodendrocytes –myelin-producing cells – into one precisely selected site in the mice.

Scientists found that the cells quickly migrated extensively throughout the brain, then developed into oligodendrocytes that produced myelin which coated or "ensheathed" the axons of cells in the brain.

"These cells infiltrate exactly those regions of the brain where one would normally expect oligodendrocytes to be present," says Goldman. "As they spread, they begin creating myelin which wraps around and ensheaths the axons."

Goldman says that while scientists have used other methods during the past two decades to remyelinate neurons in small portions of the brains of mice, the remyelination seen in the Nature Medicine paper is much more extensive. He estimates that about 10 percent of the axons in the mouse brains were remyelinated, compared to a tiny fraction of 1 percent in previous studies.

Currently, demyelinating diseases are permanent, and problems worsen as time goes on because there is no way to fix the underlying problem – restoring the myelin around the axons of brain cells. Goldman is hopeful that infusion of cells like oligodendrocyte progenitors might be used to offer relief to patients.

"The implantation of oligodendrocyte progenitors could someday be a treatment strategy for these diseases," says Goldman, a neurologist whose research was supported by the National Multiple Sclerosis Society and the National Institute of Neurological Diseases and Stroke. While the experiment provides hope for patients, Goldman says that further studies are necessary before considering a test in humans. Currently he’s conducting experiments in an attempt to remyelinate not just the brains but the entire nervous system of mice.

In addition to MS, many diseases affecting tens of millions of people in the United States involve myelin problems, Goldman says. These include widespread diseases like diabetes, heart disease and high blood pressure, where decreased blood flow can damage myelin and hurt brain cells, as well as strokes, which often destroy brain cells in part by knocking out the cells that pump out myelin. In addition, cerebral palsy is largely caused by a myelin problem in infants born prematurely.

The team found that adult human cells were much more adept at settling into the brain, becoming oligodendrocytes and producing myelin than the fetal cells. After just four weeks, adult cells but not fetal cells were producing myelin. After 12 weeks, four times as many oligodendrocytes derived from adult cells were producing myelin – 40 percent, compared to 10 percent of the cells from fetal cells. In addition, adult cells were likely to take root and form oligodendrocytes, not other brain cells such as neurons or astrocytes, which are not necessary for myelin production. On average, each oligodendrocyte from an adult cell successfully remyelinated five axons, compared to just one axon for fetal cells.

"The adult-acquired cells not only myelinate much more quickly, but more extensively – they myelinate many more axons per cell, and they do so with much higher efficiency. The adult cells were far more efficient than fetal cells at getting the job done," Goldman says.

An expert on the brain’s stem and progenitor cells, Goldman in 1999 isolated the cell that produces the oligodendrocyte, becoming the first person to isolate a progenitor cell in the brain (both stem cells and progenitor cells can develop into different types of cells, but unlike stem cells, progenitors cannot renew themselves indefinitely.). Later his team discovered that the cell is "multi-potential" – it can evolve into an oligodendrocyte, a neuron, or an astrocyte, depending on the timing and environment of a particular section of the brain.

Besides Goldman, other authors of the Nature Medicine paper include Martha Windrem, Ph.D., of the University of Rochester; Marta Nunes, William Rashbaum, Theodore Schwartz, and Neeta Roy of Cornell; and Robert Goodman and Guy McKhann II of Columbia University Medical School.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>