Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to epilepsy - magnetic fields guide surgery

06.10.2003


Electrical signals from nerves in the brain cause weak magnetic fields which can be measured by means of magnetoencephalography (MEG). A project supported by the Austrian Science Fund (FWF) has investigated the extent to which direct measurement of neural electrical activity can be coupled with MEG to diagnose and treat epilepsy. The findings are important in view of today’s spiralling health care costs, as the apparatus used to detect magnetic fields in the brain is 30 times as expensive as that used to measure electrical signals directly.

About three percent of all Europeans develop epilepsy in the course of their lifetimes. In Austria 64,000 people are currently suffering from the disease. The illness is typically caused by unusual activity in the nerve cells in certain regions of the brain. This can be measured by electroencephalography (EEG) - a technique that has been around for over 70 years - or MEG which is a much more recent development. Professor Christoph Baumgartner of the Neurological University Clinic at Vienna General Hospital has looked into the effect of combining both methods on the accuracy with which the affected parts of the brain can be localised. The results of the research, which was supported by the FWF, indicate that the new approach is better than either EEG or MEG alone at localising the hyperactive regions of the brain. It also has the advantage that the risky "invasive" methods - introducing electrodes into the brain - do not have to be used as often.

Precision surgery



In epilepsy cases that do not adequately respond to medication the only option is surgery, and for this the affected areas of the brain must first be localised. As Baumgartner puts it: "Although highly effective drugs are now available, about 20 percent of all patients do not respond to them. Surgery is an effective alternative for most sufferers. This involves removing the irregular parts of the brain. But to ensure that seizure freedom achieved in this way does not come at the cost of neurological deficits, the affected area must be precisely localised before the operation."

Surface EEG - a non-invasive method - is one of the mapping techniques that can be used for this purpose. However, the accuracy of the measurements is limited by the fact that the scalp and the skull act as insulators. A non-involved reference is also needed to interpret the electrical signals. However, this is often subject to other distorting factors, making it difficult to pinpoint the hyperactive regions of the brain.

Implantation or combined measurement

Because of this, it is currently necessary to implant electrodes in the brain to obtain the necessary spatial resolution, and hence reliable results. However, according to Baumgartner: "Instead of this procedure, which is extremely unpleasant for the patient and involves a risky operation, MEG can be used in tandem with EEG. Both methods are based on the same physiological process - changes in the potentials of nerve fibre ends - but they measure different effects and can thus complement each other."

As part of the FWF project, the research team developed a biophysical model that enables the measurement results to be related to spatial data generated by magnetic resonance tomography, thus achieving the necessary precision. As to the financial side of this improved form of care, Baumgartner noted: "At present an MEG costs EUR 1.5 million, whereas a modern EEG can be had for as little as EUR 30,000. So for cost reasons, too, it is important to know where MEG scores, and use it only when it is really necessary." FWF President Professor Georg Wick commented: "One of the functions of basic research - and hence of the FWF, too - is investigating the potential applications of innovative ideas and technologies. In a high-tech society like ours, this plays a particularly important economic role."

Prof. Christoph Baumgartner | alfa
Further information:
http://www.fwf.ac.at/en/press/epilepsy.html

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>