Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to epilepsy - magnetic fields guide surgery

06.10.2003


Electrical signals from nerves in the brain cause weak magnetic fields which can be measured by means of magnetoencephalography (MEG). A project supported by the Austrian Science Fund (FWF) has investigated the extent to which direct measurement of neural electrical activity can be coupled with MEG to diagnose and treat epilepsy. The findings are important in view of today’s spiralling health care costs, as the apparatus used to detect magnetic fields in the brain is 30 times as expensive as that used to measure electrical signals directly.

About three percent of all Europeans develop epilepsy in the course of their lifetimes. In Austria 64,000 people are currently suffering from the disease. The illness is typically caused by unusual activity in the nerve cells in certain regions of the brain. This can be measured by electroencephalography (EEG) - a technique that has been around for over 70 years - or MEG which is a much more recent development. Professor Christoph Baumgartner of the Neurological University Clinic at Vienna General Hospital has looked into the effect of combining both methods on the accuracy with which the affected parts of the brain can be localised. The results of the research, which was supported by the FWF, indicate that the new approach is better than either EEG or MEG alone at localising the hyperactive regions of the brain. It also has the advantage that the risky "invasive" methods - introducing electrodes into the brain - do not have to be used as often.

Precision surgery



In epilepsy cases that do not adequately respond to medication the only option is surgery, and for this the affected areas of the brain must first be localised. As Baumgartner puts it: "Although highly effective drugs are now available, about 20 percent of all patients do not respond to them. Surgery is an effective alternative for most sufferers. This involves removing the irregular parts of the brain. But to ensure that seizure freedom achieved in this way does not come at the cost of neurological deficits, the affected area must be precisely localised before the operation."

Surface EEG - a non-invasive method - is one of the mapping techniques that can be used for this purpose. However, the accuracy of the measurements is limited by the fact that the scalp and the skull act as insulators. A non-involved reference is also needed to interpret the electrical signals. However, this is often subject to other distorting factors, making it difficult to pinpoint the hyperactive regions of the brain.

Implantation or combined measurement

Because of this, it is currently necessary to implant electrodes in the brain to obtain the necessary spatial resolution, and hence reliable results. However, according to Baumgartner: "Instead of this procedure, which is extremely unpleasant for the patient and involves a risky operation, MEG can be used in tandem with EEG. Both methods are based on the same physiological process - changes in the potentials of nerve fibre ends - but they measure different effects and can thus complement each other."

As part of the FWF project, the research team developed a biophysical model that enables the measurement results to be related to spatial data generated by magnetic resonance tomography, thus achieving the necessary precision. As to the financial side of this improved form of care, Baumgartner noted: "At present an MEG costs EUR 1.5 million, whereas a modern EEG can be had for as little as EUR 30,000. So for cost reasons, too, it is important to know where MEG scores, and use it only when it is really necessary." FWF President Professor Georg Wick commented: "One of the functions of basic research - and hence of the FWF, too - is investigating the potential applications of innovative ideas and technologies. In a high-tech society like ours, this plays a particularly important economic role."

Prof. Christoph Baumgartner | alfa
Further information:
http://www.fwf.ac.at/en/press/epilepsy.html

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>