Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When heme attacks: After trauma, the molecule that makes life possible rampages

02.10.2003


PENN researchers find how heme harms – And how to prevent the damage



Heme, the iron-bearing, oxygen-carrying core of hemoglobin, makes it possible for blood to carry oxygen, but researchers from the University of Pennsylvania School of Medicine have determined how free-floating heme can also make traumatic events worse by damaging tissue. The Penn researchers present their findings in the October 2nd issue of the journal Nature. Fortunately, the researchers also identified a chemical that can be targeted by drug developers to impede the deleterious effects of free-floating heme.

Following a traumatic event – such as an accident, a stroke, a heart attack or even surgery – heme floods the spaces between and inside cells and exacerbates the damage. It does so by shutting down an important cell membrane channel, an action that kills neurons and constricts blood vessels. While investigating this process, the researchers also determined that a chemical called NS1619 restores the function of the cell membrane channel. NS1619 and its derivatives could be the source for a new drug – one that prevents the secondary events that worsen trauma damage.


"Following a heart attack, a stroke, or any really severe physical injury, heme is literally shaken loose from hemoglobin," said Xiang Dong Tang, MD, PhD, Staff Scientist in Penn’s Department of Physiology. "Normally, cells can compensate and recycle loose heme. But when larger concentrations are released, heme can gum up the works, specifically the Maxi-K ion channel, a cell membrane protein important for blood vessel relaxation and neuron excitability."

Maxi-K is a channel that moves potassium ions out of cells. In the Nature paper, Tang and his colleagues prove that the Maxi-K protein possesses sites that bind heme. If these sites were removed or altered, heme could not effect Maxi-K proteins.

"Maxi-K is found in the lining of blood vessels. When it is turned off, the vessel constricts, increasing blood pressure, which is decidedly not beneficial following a heart attack, " said Toshinori Hoshi, PhD, Associate Professor in Penn’s Department of Physiology and co-author of the Nature article. "In neurons, disrupting Maxi-K leads to excessive calcium accumulation. Eventually, this ionic buildup triggers cell suicide and, therefore, the loss of the neuron."

The chemical heme is essential for most forms of life. It exists in hemoglobin for oxygen transport, in cytochromes for cellular energy production, and in guanylate cyclase for blood pressure regulation. The molecule itself is tiny, a flat snowflake of a carbon framework surrounding a single atom of iron, but it is crucial for the cellular process of respiration and the action of nirtroglycerine.

"Generally, the heme molecule is attached to larger molecules, such as hemoglobin, but it is easily set loose. Indeed, there is an entire cellular industry behind recycling and reusing ’lost’ heme," said Tang. "But that system can get overwhelmed in times of serious trauma and bleeding."

Studying the heme recycling system might prove useful in developing treatments for preventing the secondary damage set off by heme. Certain cells, such as neurons, do have ways of transporting heme. If the ’heme transport’ is identified and the specific blocker is found, it could help prevent symptoms resulting from trauma and bleeding.

Meanwhile, according to Tang and his colleagues, there is already a known agent that can relieve Maxi-K from heme inhibition. NS1619 is known as the "Maxi-K opener," and, as the researchers have shown, readily reverses the heme-mediated inhibition.

"I can envision the use of a drug similar to NS1619 as an emergency treatment," said Tang. "In the emergency room, after an accident or heart attack, it could be used to keep the damage from continuing on a cellular level – before it could result in bad effects for the entire body."

Scientists also contributing to this research include Rong Xu from Penn, Mark F. Reynolds, from St. Joseph’s University, Marcia L. Garcia, from Merck Research Laboratories, and Stefan H. Heinemann, from Friedrich Schiller University. Funding for this research came from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>