Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research technique provides unique glimpse into Alzheimer’s disease

01.10.2003


A team led by researchers at Washington University School of Medicine in St. Louis, in collaboration with researchers at Eli Lilly and Co. in Indianapolis, have developed a new technique that, for the first time, provides a way to dynamically study proteins known to be related to Alzheimer’s disease in the fluid between brain cells, called interstitial fluid.



Using this new technique in mice, the team discovered that the relationship between levels of a key molecule involved in Alzheimer’s disease, amyloid-beta (ABeta), in interstitial fluid and cerebrospinal fluid changes as the disease progresses. Cerebrospinal fluid -– the fluid that cushions and surrounds the brain – is a main focus in efforts to diagnose and possibly treat Alzheimer’s disease.

"The most exciting part of this study is that we now have a way to measure a pool of ABeta that previously could not be evaluated," says John R. Cirrito, a graduate student in neuroscience. "Using this new approach, we were able to identify another difference between young mice that have not yet developed Alzheimer’s-like changes and those that have developed Alzheimer’s-like brain changes, which provides a new opportunity to explore the development of this disease."


Cirrito is first author of the study, which will be published in the Oct. 1 issue of The Journal of Neuroscience. The principal investigator is David M. Holtzman, M.D., the Andrew B. and Gretchen P. Jones Professor of Neurology and head of the Department of Neurology, the Charlotte and Paul Hagemann Professor of Neurology and a professor of molecular biology and pharmacology. Collaborators at Lilly include Patrick May, Ph.D., Ronald DeMattos, Ph.D., Kelly Bales and Steven Paul, M.D.

A key step in the development of Alzheimer’s disease is the formation of sticky, senile plaques in the brain, composed primarily of clumps of ABeta. Although these plaques are believed to form at least in part in the spaces between brain cells, there previously was no way to selectively extract and measure levels of ABeta in interstitial fluid.

To remove brain fluid samples for evaluation, scientists often use a technique called microdialysis, in which a miniscule tube is inserted into the part of the brain being studied. A substance, called a membrane, at the tip of the tube ensures that only freely mobile molecules are collected.

The main obstacle to studying ABeta in interstitial fluid is that the molecule is much larger than those typically measured with microdialysis. ABeta molecules also tend to stick to each other and to other particles, making it even more difficult to lure them into a tiny tube through traditional membranes. Cirrito and colleagues therefore developed a unique way to perform microdialysis, incorporating two key components: a membrane that captures larger molecules and proteins that make ABeta less sticky.

"ABeta has a lot of finicky properties, which makes it tough to capture with microdialysis," Cirrito explains. "But we put a lot of time and thought into this and finally got it to work."

Armed with this new experimental method, the team discovered some surprising things about of ABeta levels in the interstitial fluid of mice that develop Alzheimer’s-type brain changes.

Two key types of ABeta are ABeta40 and ABeta42. Cirrito’s team confirmed that in cerebrospinal fluid, ABeta42 levels decrease as the disease progresses, whereas ABeta40 remains unchanged. Surprisingly, they discovered a different pattern in interstitial fluid: ABeta42 remains constant while ABeta40 increases.

Moreover, levels of overall ABeta in interstitial fluid and cerebrospinal fluid were not correlated in young animals but were correlated in older, plaque-ridden mice.

"ABeta that ends up in the cerebrospinal fluid comes from interstitial fluid, so you’d expect the two compartments to communicate," says Cirrito. "Therefore, we were surprised to find that they were not correlated in young mice, and that there apparently is a shift during aging and/or during plaque development that affects how ABeta is moved between the two compartments."

Because microdialysis is performed in living animals, the team was able to take multiple interstitial fluid samples from each animal over the course of several hours. This provided the opportunity to study the breakdown and accumulation of ABeta over time, revealing new information about how the brain metabolizes and gets rid of this molecule.

The team first measured interstitial fluid ABeta levels every hour for eight hours. Then they injected the animals with a type of drug called a gamma-secretase inhibitor, which drastically decreases production of ABeta and currently is being investigated as a potential therapy for humans with the disease. Ten more interstitial fluid samples were collected over the following ten hours to measure how quickly the ABeta that had accumulated before the injection was broken down.

Comparing the rate of ABeta degradation in young and old mice, the team found that the half-life of ABeta was about twice as long in older mice. In other words, it takes about twice as long for the soluble, or mobile, pool of brain ABeta to breakdown in mice with Alzheimer’s-like brain plaques than in young mice without plaques. Curiously, however, the baseline concentration of ABeta in old and young mice was not significantly different. According to the researchers, this may suggest that another, previously unidentified mechanism is involved in the development of Alzheimer’s plaques.

"The difference in the elimination rate may turn out to be an extremely important finding," Holtzman says. "This suggests that once plaques form, they alter the metabolism of ABeta in the brain in a very specific way. This finding and technique should assist us in determining how other molecules that are involved in ABeta metabolism influence Alzheimer’s disease as well as be a useful tool in the development of new diagnostic and treatment strategies."


Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, DeMattos RB, Holtzman DM. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. The Journal of Neuroscience, 23(26), Oct. 1, 2003.

Funding from the National Institutes of Health, the MetLife Foundation and Eli Lilly and Co. supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>