Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists invent search-and-destroy method to flush HIV out of hiding places in body

17.09.2003


UCLA AIDS Institute scientists have devised a new technique to switch on and drive hibernating HIV from its hiding places in the body. Reported in the September issue of Immunity, the research suggests a possible therapeutic strategy to kill the hidden virus so people who are HIV-positive could eventually stop taking antiretroviral medications.



"Our findings show potential for flushing HIV out of its hiding places in the body," said Dr. Jerome Zack, principal investigator and associate director of basic sciences for the UCLA AIDS Institute. "If our method proves successful, it may enable HIV-infected individuals to discontinue costly and complex antiretroviral therapy, which can cause serious side effects."

"Immune cells can’t kill HIV if they can’t detect it," said Dr. David Brooks, a postdoctoral fellow and lead author of the study. "By switching on an HIV-positive person’s dormant virus, we hope to enable the immune system to recognize and eradicate HIV-infected cells before they spread more virus."


Antiretroviral drugs kill HIV, often depleting the virus to undetectable levels in the blood of people taking the medications. This treatment alone, however, cannot completely eliminate HIV infection from the body.

Latent, or hibernating HIV, still hides in resting T-cells, which quietly lie in wait for a foreign particle to invade the immune system. When a foreign invasion occurs, the event activates some of the T-cells, which promptly begin manufacturing virus. And, when an HIV-infected person discontinues antiretroviral drugs, this small reservoir of latently infected T-cells can rekindle the spread of HIV infection throughout the body.

"About one in a million T-cells holds latent HIV that the antiretroviral drugs can’t touch," said Zack, a professor of medicine and vice chair of microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA. "Our challenge was to make latent HIV vulnerable to treatment without harming healthy cells."

The UCLA researchers created a model using mice specially bred without immune systems. The team implanted the mice with human thymus tissue and then infected the tissue with HIV. The mice responded by producing human T-cells infected with latent HIV.

Zack and Brooks next used a two-step approach to expose and destroy latent HIV. First, they stimulated the T-cells strongly enough to prompt the cell to express latent virus but not to trigger other cellular functions. This revealed the hidden HIV.

Second, they used a new weapon called an immunotoxin -- an anti-HIV antibody genetically fused with a bacterial toxin -- to target and kill only the T-cells infected with HIV.

"The immunotoxin functions like a smart bomb -- the antibody is the missile guidance system and the toxin is the explosive," Zack said. "When the T-cell switches on and starts expressing virus, the antibody binds to the surface of the T-cell, forcing the toxin into the cell and killing it. This prevents the cell from making more virus."

"The beauty of this approach is that it doesn’t destroy healthy T-cells -- only the ones hiding virus," Brooks said.

Prior to the UCLA discovery, scientists needed to over-stimulate T-cells to force them to express latent virus. This ran the risk of harming the patient by impairing the entire immune system.

In contrast, the UCLA model exposed and killed hidden HIV without affecting the rest of the immune system. The T-cells in the UCLA model also did not divide, indicating that they were able to produce virus without behaving as if they were confronting a foreign particle.

"In our mouse model, the two-step approach cleared out nearly 80 percent of the latently infected T-cells," said Zack. "No one has ever been able to achieve this before. We hope that the strategy we’ve proven effective in the lab will show similar success in people."

Zack and Brooks envision the two-step approach working as a supplement to antiretroviral therapy, and are planning studies on more complex models before progressing to human clinical trials.

"We propose that HIV-infected individuals could use the two-step approach while they take antiretroviral drugs. The medications would stop replication of any virus that the immunotoxin missed," said Brooks. "After the toxin rids the body of all latent HIV, the patient may be able to safely discontinue antiretroviral therapy."

In another possible scenario, physicians might first administer a therapeutic vaccine to enhance the ability of the patient’s T-cells to kill HIV-infected cells. This would help the two-step approach rid the body of latent virus more efficiently.


The National Institutes of Health, American Foundation for AIDS Research and the Universitywide AIDS Research Program funded the study. Co-authors included Dean Hamer, the National Cancer Institute; Philip Arlen, Greg Bristol, Lianying Gao and Christina Kitchen, UCLA; and Edward Berger, the National Institute of Allergy and Infectious Diseases.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>