Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers find caffeine reduces muscle pain during exercise

16.09.2003


That cup of coffee in the morning does more than wake you up. It can also help you feel less pain during your morning workout.



That’s what researchers at the University of Georgia have found in a recent study exploring why muscles hurt during exercise. The research group previously learned that aspirin, though commonly used to treat muscle pain, did not reduce muscle pain produced by vigorous exercise.

"Muscle contractions produce a host of biochemicals that can stimulate pain. Aspirin blocks only one of those chemicals," said Patrick O’Connor, professor of exercise science in UGA’s College of Education. "Apparently the biochemical blocked by aspirin has little role in exercise-induced muscle pain."


The researchers’ latest study, published in the August issue of the Journal of Pain, found that caffeine reduced thigh muscle pain during cycling exercise. Participants in the study, 16 nonsmoking young adult men, cycled for 30 minutes on two separate days. The exercise intensity was the same on both days and purposefully set to make the riders’ thigh muscles hurt. Participants in the study took either a caffeine pill or a placebo pill one hour before the exercise. The riders reported feeling substantially less pain in their thigh muscles after taking caffeine compared to after taking the placebo.

This observation suggests that prior reports showing that caffeine improves endurance exercise performance might be explained partially by caffeine’s hypoalgesic properties, according to O’Connor.

"Not all analgesics or combinations [acetaminophine and caffeine] are effective for every type of pain or every individual," he said. "Much of this is due to biological variation among people in receptors for the drugs as well as variation in pain receptors in different body tissues. For instance, brain tissue has no pain receptors so surgery can be done on the brain without anesthesia. Of course it will hurt getting through the skin and cranium."

Caffeine also seems to work less well for heavy caffeine users who habituate because of a change in receptors with caffeine use, O’Connor said.

Prior research has focused on other types of pain, such as headaches, joint or skin pain, toothaches or pain in damaged muscles at rest, maybe a few days after being injured during exercise. The UGA researchers’ work focuses on pain that occurs naturally with muscles contracting during exercise.

"The next step is to learn how caffeine helps people feel less muscle pain during exercise" said Robert Motl, lead author of the study and an assistant professor of kinesiology at the University of Illinois. "Evidence suggests that caffeine works by blocking the actions of adenosine, however, we don’t know yet whether the caffeine is acting on muscles or the brain."

Motl, who received his doctorate from UGA in 2002, also worked

Michael Childs | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>