Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers find caffeine reduces muscle pain during exercise

16.09.2003


That cup of coffee in the morning does more than wake you up. It can also help you feel less pain during your morning workout.



That’s what researchers at the University of Georgia have found in a recent study exploring why muscles hurt during exercise. The research group previously learned that aspirin, though commonly used to treat muscle pain, did not reduce muscle pain produced by vigorous exercise.

"Muscle contractions produce a host of biochemicals that can stimulate pain. Aspirin blocks only one of those chemicals," said Patrick O’Connor, professor of exercise science in UGA’s College of Education. "Apparently the biochemical blocked by aspirin has little role in exercise-induced muscle pain."


The researchers’ latest study, published in the August issue of the Journal of Pain, found that caffeine reduced thigh muscle pain during cycling exercise. Participants in the study, 16 nonsmoking young adult men, cycled for 30 minutes on two separate days. The exercise intensity was the same on both days and purposefully set to make the riders’ thigh muscles hurt. Participants in the study took either a caffeine pill or a placebo pill one hour before the exercise. The riders reported feeling substantially less pain in their thigh muscles after taking caffeine compared to after taking the placebo.

This observation suggests that prior reports showing that caffeine improves endurance exercise performance might be explained partially by caffeine’s hypoalgesic properties, according to O’Connor.

"Not all analgesics or combinations [acetaminophine and caffeine] are effective for every type of pain or every individual," he said. "Much of this is due to biological variation among people in receptors for the drugs as well as variation in pain receptors in different body tissues. For instance, brain tissue has no pain receptors so surgery can be done on the brain without anesthesia. Of course it will hurt getting through the skin and cranium."

Caffeine also seems to work less well for heavy caffeine users who habituate because of a change in receptors with caffeine use, O’Connor said.

Prior research has focused on other types of pain, such as headaches, joint or skin pain, toothaches or pain in damaged muscles at rest, maybe a few days after being injured during exercise. The UGA researchers’ work focuses on pain that occurs naturally with muscles contracting during exercise.

"The next step is to learn how caffeine helps people feel less muscle pain during exercise" said Robert Motl, lead author of the study and an assistant professor of kinesiology at the University of Illinois. "Evidence suggests that caffeine works by blocking the actions of adenosine, however, we don’t know yet whether the caffeine is acting on muscles or the brain."

Motl, who received his doctorate from UGA in 2002, also worked

Michael Childs | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>