Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers identify chromosome location for 2nd form of Joubert syndrome

04.09.2003


Physicians may be a step closer to pre-natal diagnosis of a rare genetic disorder called Joubert syndrome. This condition, present before birth, affects an area of the brain controlling balance and coordination.



New findings from the University of California, San Diego (UCSD) School of Medicine have identified chromosome 11 as a second site for a gene or genes that cause Joubert syndrome, a disorder that affects about 1 in 30,000 individuals. Prior to this study, chromosome 9 had been the only known site with gene mutations causing the disorder.

The new study, published online in the September issue of the American Journal of Human Genetics, focused on three Middle Eastern families whose relatives had inter-married and passed the genetic defect to several family members.


Characterized by absence or underdevelopment of a brain region called the cerebellar vermis, and by a malformed brain stem, Joubert syndrome affects individuals to varying degrees across the spectrum of motor and mental development. Its most common features include lack of muscle control and decreased muscle tone; an abnormal breathing pattern called hypernea, in which babies pant; abnormal eye and tongue movements; and mild or moderate retardation. The type of Joubert syndrome now traced to chromosome 11 also includes eye or kidney problems, in addition to the classical symptoms associated with the disorder.

“The hunt for genes for this syndrome has been extremely slow and none are currently known, due to the rarity of the syndrome,” said the study’s senior author, Joseph Gleeson, M.D., UCSD assistant professor of neurosciences. “The main problem in identifying genes has been the small number of patients appropriate for genetic analysis.”

This led Gleeson’s team to an intensive patient recruiting effort and a change in the way the analysis was being performed.

Joubert syndrome is inherited in an autosomal recessive manner, which means that both parents carry the mutant version of the gene, while showing no signs of the disease themselves. To increase their subject pool for research, the Gleeson team focused on the Middle East, where families are larger and inter-marriage between cousins is an accepted custom. Working with collaborators in Oman, the United Arab Emirates, Saudi Arabia, Jordan and Pakistan, the UCSD researchers obtained DNA samples from affected and unaffected individuals in 20 families.

Using sophisticated genetic screening tools, the researchers identified a common genetic region in seven children from three affected families who displayed the form of Joubert syndrome with eye and kidney problems. These patients included a northern Pakistani child of first cousins, who displayed visual impairment and kidney cysts in addition to the characteristic breathing abnormality and muscle coordination problem. Two of six children of first cousins from the United Arab Emirates, exhibited Joubert features such as brain malformations (as revealed on an MRI scan), impaired vision, jerky eye movements and a malformed retina. Three children from another United Arab Emirates family experienced panting respirations, balance problems, retinal dystrophy and moderate visual impairment.

The study’s authors noted that the variability of symptoms in the affected individuals suggests that there may be genetic modifiers that influence the disease severity and expression of symptoms.

Gleeson, who has studied Joubert syndrome for several years, noted “parents of affected children are just craving for information, to understand the basis for this disorder and something about the prognosis. The most heart wrenching thing is parents who are reluctant to get pregnant again because they have had a single child with this condition.”

He added that the possibility of developing a genetic screening test gives his group an additional incentive to discover the gene as soon as possible.

“We don’t yet know the exact genes involved; this is an incremental step,” Gleeson said. “But, we’re getting closer to providing the information these parents so desperately want.”

In addition to Gleeson, additional researchers include first-author Lesley C. Keeler, M.S., Sarah E. Marsh, M.S., Esther P. Leeflang, Ph.D., Neurogenetics Laboratory, UCSD Division of Pediatric Neurology; Christopher G. Woods, M.D., Molecular Medicine Unit and Yorkshire Clinical Genetics Service, St. James’ University Hospital, Leeds, United Kingdom; and Aithala Gururaj, Lihadh Al-Gazali, DCH, Laszlo Sctriha, M.D., Ph.D., Department of Pediatrics, United Emirates University, Al Ain, UAE.

The study was performed collaboratively with the Marshfield Center for Genetics in Wisconsin and funded by the March of Dimes.

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2003/09_03_Gleeson.html
http://gleesongenetics.ucsd.edu/
http://www.joubertsyndrome.org/index.htm

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>