Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood test uncovers individual risk for lung cancer

03.09.2003


Smokers carrying a newly found genetic marker are 5-10 times more likely to fall victim to the disease than other smokers; 120 times more than nonsmokers who don’t carry the marker

Scientists at the Weizmann Institute have discovered a new genetic risk factor that increases the susceptibility of smokers to lung cancer.

Published in the Journal of the National Cancer Institute, the findings show that smokers who carry the newly discovered genetic marker are around 120 times more likely to get lung cancer than non-smokers who do not have the risk factor.



A simple blood test based on these findings will be able to detect smokers who are at especially high risk of developing lung cancer.

The findings, made by Prof. Zvi Livneh and Dr. Tamar Paz-Elizur of the Biological Chemistry Department, are a result of many years of research conducted on the role of DNA-repair mechanisms in cancer. The scientists focused on lung cancer, one of the most common and most deadly cancers, responsible for 30% of all cancer deaths. In the USA alone there are 160,000 new patients per year. Smoking is the major cause of lung cancer, and 90% of hospitalized lung cancer patients are smokers. However, only 10% of heavy smokers develop the disease, suggesting involvement of a personal genetic susceptibility. Livneh struck up a collaboration with Dr. Meir Krupsky of the Chaim Sheba Medical Center to determine whether this susceptibility is caused by a decreased ability to repair DNA damage.

Our DNA is damaged about 20,000 times a day by factors such as sunlight, smoke and reactions within the body. If left unrepaired, damages to the DNA can lead to cancer. Fortunately the body has a stock of enzymes whose function is to repair DNA. These enzymes scan the DNA and detect damage using sophisticated sensor systems. Upon detection of damage, the enzymes perform an "operation" on the DNA, cutting out the damaged part and replacing it with a new DNA part. Thus the efficiency of the repair systems is critical for the prevention of cancer.

Livneh and his team concentrated on a specific DNA repair enzyme, called OGG1 (8-oxoguanine DNA glycosylase 1). This repair enzyme deletes DNA parts damaged by toxic molecules called oxygen radicals, which are found in tobacco smoke. The team developed a new blood test that enabled them to measure the level of activity of OGG1. Using this method, the researchers found that 40% of lung cancer patients have low levels of OGG1 activity, in contrast to only 4% of the general population.

These and other findings published in the study show that low OGG1 activity results in high susceptibility to cancer: 5-10 times more than those whose OGG1 activity is normal. Smoking increases this risk, since it causes more damage for DNA repair enzymes, including OGG1, to fix. Smokers who have a low level of OGG1 activity were found to have the greatest risk of lung cancer, as much as 120 higher than non-smokers with regular levels of OGG1 activity.

These findings suggest that a substantial portion of lung cancer cases might result from a combination of smoking and reduced OGG1 activity.

If so, then screening smokers for low OGG1 activity will help them make more informed decisions to stop smoking. Of course, even smokers with normal OGG1 activity are at a greater risk of getting lung cancer than the general population and the blood test will not ensure that they don’t get the disease. In addition, smoking causes other types of cancer and cardiovascular diseases, whose relation to OGG1 activity is still unknown.

The Weizmann team also included Dr. Sara Blumenstein and Dalia Elinger. Statistical analysis was conducted by Dr. Edna Schechtman from Ben-Gurion University.

Prof. Zvi Livneh’s research is supported by the Dolfi and Lola Ebner Center for BiomedicalResearch, the Levine Institute of Applied Science and the M.D. Moross Institute for Cancer Research.

Prof. Livneh is the incumbent of the Maxwell Ellis Professorial Chair in Biomedical Research.


The Weizmann Institute of Science in Rehovot, Israel is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>