Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New blood test uncovers individual risk for lung cancer


Smokers carrying a newly found genetic marker are 5-10 times more likely to fall victim to the disease than other smokers; 120 times more than nonsmokers who don’t carry the marker

Scientists at the Weizmann Institute have discovered a new genetic risk factor that increases the susceptibility of smokers to lung cancer.

Published in the Journal of the National Cancer Institute, the findings show that smokers who carry the newly discovered genetic marker are around 120 times more likely to get lung cancer than non-smokers who do not have the risk factor.

A simple blood test based on these findings will be able to detect smokers who are at especially high risk of developing lung cancer.

The findings, made by Prof. Zvi Livneh and Dr. Tamar Paz-Elizur of the Biological Chemistry Department, are a result of many years of research conducted on the role of DNA-repair mechanisms in cancer. The scientists focused on lung cancer, one of the most common and most deadly cancers, responsible for 30% of all cancer deaths. In the USA alone there are 160,000 new patients per year. Smoking is the major cause of lung cancer, and 90% of hospitalized lung cancer patients are smokers. However, only 10% of heavy smokers develop the disease, suggesting involvement of a personal genetic susceptibility. Livneh struck up a collaboration with Dr. Meir Krupsky of the Chaim Sheba Medical Center to determine whether this susceptibility is caused by a decreased ability to repair DNA damage.

Our DNA is damaged about 20,000 times a day by factors such as sunlight, smoke and reactions within the body. If left unrepaired, damages to the DNA can lead to cancer. Fortunately the body has a stock of enzymes whose function is to repair DNA. These enzymes scan the DNA and detect damage using sophisticated sensor systems. Upon detection of damage, the enzymes perform an "operation" on the DNA, cutting out the damaged part and replacing it with a new DNA part. Thus the efficiency of the repair systems is critical for the prevention of cancer.

Livneh and his team concentrated on a specific DNA repair enzyme, called OGG1 (8-oxoguanine DNA glycosylase 1). This repair enzyme deletes DNA parts damaged by toxic molecules called oxygen radicals, which are found in tobacco smoke. The team developed a new blood test that enabled them to measure the level of activity of OGG1. Using this method, the researchers found that 40% of lung cancer patients have low levels of OGG1 activity, in contrast to only 4% of the general population.

These and other findings published in the study show that low OGG1 activity results in high susceptibility to cancer: 5-10 times more than those whose OGG1 activity is normal. Smoking increases this risk, since it causes more damage for DNA repair enzymes, including OGG1, to fix. Smokers who have a low level of OGG1 activity were found to have the greatest risk of lung cancer, as much as 120 higher than non-smokers with regular levels of OGG1 activity.

These findings suggest that a substantial portion of lung cancer cases might result from a combination of smoking and reduced OGG1 activity.

If so, then screening smokers for low OGG1 activity will help them make more informed decisions to stop smoking. Of course, even smokers with normal OGG1 activity are at a greater risk of getting lung cancer than the general population and the blood test will not ensure that they don’t get the disease. In addition, smoking causes other types of cancer and cardiovascular diseases, whose relation to OGG1 activity is still unknown.

The Weizmann team also included Dr. Sara Blumenstein and Dalia Elinger. Statistical analysis was conducted by Dr. Edna Schechtman from Ben-Gurion University.

Prof. Zvi Livneh’s research is supported by the Dolfi and Lola Ebner Center for BiomedicalResearch, the Levine Institute of Applied Science and the M.D. Moross Institute for Cancer Research.

Prof. Livneh is the incumbent of the Maxwell Ellis Professorial Chair in Biomedical Research.

The Weizmann Institute of Science in Rehovot, Israel is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Alex Smith | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>