Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood test uncovers individual risk for lung cancer

03.09.2003


Smokers carrying a newly found genetic marker are 5-10 times more likely to fall victim to the disease than other smokers; 120 times more than nonsmokers who don’t carry the marker

Scientists at the Weizmann Institute have discovered a new genetic risk factor that increases the susceptibility of smokers to lung cancer.

Published in the Journal of the National Cancer Institute, the findings show that smokers who carry the newly discovered genetic marker are around 120 times more likely to get lung cancer than non-smokers who do not have the risk factor.



A simple blood test based on these findings will be able to detect smokers who are at especially high risk of developing lung cancer.

The findings, made by Prof. Zvi Livneh and Dr. Tamar Paz-Elizur of the Biological Chemistry Department, are a result of many years of research conducted on the role of DNA-repair mechanisms in cancer. The scientists focused on lung cancer, one of the most common and most deadly cancers, responsible for 30% of all cancer deaths. In the USA alone there are 160,000 new patients per year. Smoking is the major cause of lung cancer, and 90% of hospitalized lung cancer patients are smokers. However, only 10% of heavy smokers develop the disease, suggesting involvement of a personal genetic susceptibility. Livneh struck up a collaboration with Dr. Meir Krupsky of the Chaim Sheba Medical Center to determine whether this susceptibility is caused by a decreased ability to repair DNA damage.

Our DNA is damaged about 20,000 times a day by factors such as sunlight, smoke and reactions within the body. If left unrepaired, damages to the DNA can lead to cancer. Fortunately the body has a stock of enzymes whose function is to repair DNA. These enzymes scan the DNA and detect damage using sophisticated sensor systems. Upon detection of damage, the enzymes perform an "operation" on the DNA, cutting out the damaged part and replacing it with a new DNA part. Thus the efficiency of the repair systems is critical for the prevention of cancer.

Livneh and his team concentrated on a specific DNA repair enzyme, called OGG1 (8-oxoguanine DNA glycosylase 1). This repair enzyme deletes DNA parts damaged by toxic molecules called oxygen radicals, which are found in tobacco smoke. The team developed a new blood test that enabled them to measure the level of activity of OGG1. Using this method, the researchers found that 40% of lung cancer patients have low levels of OGG1 activity, in contrast to only 4% of the general population.

These and other findings published in the study show that low OGG1 activity results in high susceptibility to cancer: 5-10 times more than those whose OGG1 activity is normal. Smoking increases this risk, since it causes more damage for DNA repair enzymes, including OGG1, to fix. Smokers who have a low level of OGG1 activity were found to have the greatest risk of lung cancer, as much as 120 higher than non-smokers with regular levels of OGG1 activity.

These findings suggest that a substantial portion of lung cancer cases might result from a combination of smoking and reduced OGG1 activity.

If so, then screening smokers for low OGG1 activity will help them make more informed decisions to stop smoking. Of course, even smokers with normal OGG1 activity are at a greater risk of getting lung cancer than the general population and the blood test will not ensure that they don’t get the disease. In addition, smoking causes other types of cancer and cardiovascular diseases, whose relation to OGG1 activity is still unknown.

The Weizmann team also included Dr. Sara Blumenstein and Dalia Elinger. Statistical analysis was conducted by Dr. Edna Schechtman from Ben-Gurion University.

Prof. Zvi Livneh’s research is supported by the Dolfi and Lola Ebner Center for BiomedicalResearch, the Levine Institute of Applied Science and the M.D. Moross Institute for Cancer Research.

Prof. Livneh is the incumbent of the Maxwell Ellis Professorial Chair in Biomedical Research.


The Weizmann Institute of Science in Rehovot, Israel is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>