Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood test uncovers individual risk for lung cancer

03.09.2003


Smokers carrying a newly found genetic marker are 5-10 times more likely to fall victim to the disease than other smokers; 120 times more than nonsmokers who don’t carry the marker

Scientists at the Weizmann Institute have discovered a new genetic risk factor that increases the susceptibility of smokers to lung cancer.

Published in the Journal of the National Cancer Institute, the findings show that smokers who carry the newly discovered genetic marker are around 120 times more likely to get lung cancer than non-smokers who do not have the risk factor.



A simple blood test based on these findings will be able to detect smokers who are at especially high risk of developing lung cancer.

The findings, made by Prof. Zvi Livneh and Dr. Tamar Paz-Elizur of the Biological Chemistry Department, are a result of many years of research conducted on the role of DNA-repair mechanisms in cancer. The scientists focused on lung cancer, one of the most common and most deadly cancers, responsible for 30% of all cancer deaths. In the USA alone there are 160,000 new patients per year. Smoking is the major cause of lung cancer, and 90% of hospitalized lung cancer patients are smokers. However, only 10% of heavy smokers develop the disease, suggesting involvement of a personal genetic susceptibility. Livneh struck up a collaboration with Dr. Meir Krupsky of the Chaim Sheba Medical Center to determine whether this susceptibility is caused by a decreased ability to repair DNA damage.

Our DNA is damaged about 20,000 times a day by factors such as sunlight, smoke and reactions within the body. If left unrepaired, damages to the DNA can lead to cancer. Fortunately the body has a stock of enzymes whose function is to repair DNA. These enzymes scan the DNA and detect damage using sophisticated sensor systems. Upon detection of damage, the enzymes perform an "operation" on the DNA, cutting out the damaged part and replacing it with a new DNA part. Thus the efficiency of the repair systems is critical for the prevention of cancer.

Livneh and his team concentrated on a specific DNA repair enzyme, called OGG1 (8-oxoguanine DNA glycosylase 1). This repair enzyme deletes DNA parts damaged by toxic molecules called oxygen radicals, which are found in tobacco smoke. The team developed a new blood test that enabled them to measure the level of activity of OGG1. Using this method, the researchers found that 40% of lung cancer patients have low levels of OGG1 activity, in contrast to only 4% of the general population.

These and other findings published in the study show that low OGG1 activity results in high susceptibility to cancer: 5-10 times more than those whose OGG1 activity is normal. Smoking increases this risk, since it causes more damage for DNA repair enzymes, including OGG1, to fix. Smokers who have a low level of OGG1 activity were found to have the greatest risk of lung cancer, as much as 120 higher than non-smokers with regular levels of OGG1 activity.

These findings suggest that a substantial portion of lung cancer cases might result from a combination of smoking and reduced OGG1 activity.

If so, then screening smokers for low OGG1 activity will help them make more informed decisions to stop smoking. Of course, even smokers with normal OGG1 activity are at a greater risk of getting lung cancer than the general population and the blood test will not ensure that they don’t get the disease. In addition, smoking causes other types of cancer and cardiovascular diseases, whose relation to OGG1 activity is still unknown.

The Weizmann team also included Dr. Sara Blumenstein and Dalia Elinger. Statistical analysis was conducted by Dr. Edna Schechtman from Ben-Gurion University.

Prof. Zvi Livneh’s research is supported by the Dolfi and Lola Ebner Center for BiomedicalResearch, the Levine Institute of Applied Science and the M.D. Moross Institute for Cancer Research.

Prof. Livneh is the incumbent of the Maxwell Ellis Professorial Chair in Biomedical Research.


The Weizmann Institute of Science in Rehovot, Israel is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>