Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic protein could explain Alzheimer’s and lead to breakthroughs

19.08.2003


Researchers at Northwestern University have discovered for the first time in humans the presence of a toxic protein that they believe to be responsible for the devastating memory loss found in individuals suffering from Alzheimer’s disease.



An understanding of this key molecular link in the progression of Alzheimer’s could lead to the development of new therapeutic drugs capable of reversing memory loss in patients who are treated early, in addition to preventing or delaying the disease. Help for individuals with pre-Alzheimer’s memory failure (mild cognitive impairment) also is envisioned. The findings will be published online by the Proceedings of the National Academy of Sciences during the week of Aug. 18.

The research team, led by William L. Klein, professor of neurobiology and physiology, found up to 70 times more small, soluble aggregated proteins called "amyloid b-derived diffusible ligands" (ADDLs, pronounced "addles") in the brain tissue of individuals with Alzheimer’s disease compared to that of normal individuals.


The clinical data strongly support a recent theory in which ADDLs accumulate at the beginning of Alzheimer’s disease and block memory function by a process predicted to be reversible. ADDLs have the ability to attack the memory-building activity of synapses, points of communication where neurons exchange information, without killing neurons.

"Researchers for more than a decade thought it was big molecules, the ’amyloid fibrils,’ that caused memory problems, but we think the real culprits are extremely small molecules, what we call ADDLs," said Klein, who is a member of Northwestern’s Cognitive Neurology and Alzheimer’s Disease Center. "Now we’ve shown that ADDLs are present in humans and are a clinically valid part of Alzheimer’s pathology. If we can develop drugs that target and neutralize these neurotoxins, it might be possible to not only slow down memory loss, but to actually reverse it, to bring memory function back to normal."

Although both are a form of amyloid beta, ADDLs and their properties differ significantly from the amyloid fibrils (known as plaques) that are a diagnostic hallmark of Alzheimer’s. ADDLs found in human brains, mostly 12 or 24 amyloid beta proteins clumped together, are tiny and undetectable in conventional neuropathology; fibrils are much, much larger. While fibrils are immobile toxic waste dumps, ADDLs are soluble and diffuse between brain cells until they find vulnerable synapses. (Single pieces of amyloid beta protein in the brain is normal.)

"The difference between ADDLs and fibrils is like comparing four eggs, over easy, to an enormous omelet that could feed the entire Chicago Bears team," said Klein. ""You start with eggs, but the final product taste, texture and size are all different."

The existence of ADDLs may help explain the poor correlation between plaques and neurological deficits. Studies by other researchers have shown a reversal of memory failure in mouse models treated with amyloid beta antibodies -- but without any reduction in plaque. The antibodies appear to restore memory because they neutralize ADDLs, which Klein’s group has found in mouse models with Alzheimer’s as well as in human brains with Alzheimer’s.

Klein’s research team recently began a study funded by the National Institutes of Health to continue investigating ADDLs in humans and further characterize these molecules. In addition to Alzheimer’s disease, ADDL-like molecules could be the cause of other degenerative diseases.

Klein also is working with researchers at Northwestern’s Institute for Nanotechnology on clinical diagnostics capable of detecting ADDLs in blood or cerebral spinal fluid. Currently diagnosis of Alzheimer’s is based primarily on a battery of psychological tests.

"Now that ADDLs have been discovered in humans we would like to develop effective diagnostics and that means employing nanotechnology," said Klein. "That’s because ADDLs are present in very low concentrations, and nanotechnology has the potential to provide the ultra-sensitive assays needed for the clinic."

Klein, Grant A. Krafft, formerly at Northwestern University Medical School and now chief scientific officer at Acumen Pharmaceuticals, Inc., and Caleb E. Finch, professor of biological sciences and gerontology at the University of Southern California, reported the discovery of ADDLs in 1998. Krafft and Finch are co-authors on the PNAS paper. Northwestern and USC hold joint patents on the composition and use of ADDLs in neurodisorders.

The patent rights have been licensed to Acumen Pharmaceuticals, based in Glenview, Ill., for the development of drugs that treat Alzheimer’s disease and other memory-related disorders. Clinical trials could be two or three years away.

In addition to Klein, Krafft and Finch, other authors on the paper are Yuesong Gong (lead author), Lei Chang, Kirsten L. Viola, Pascale N. Lacor and Mary P. Lambert, from Northwestern University.


The research was supported by the National Institutes of Health, the Boothroyd, Feiger and French foundations, and the Institute for the Study of Aging.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>