Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic protein could explain Alzheimer’s and lead to breakthroughs

19.08.2003


Researchers at Northwestern University have discovered for the first time in humans the presence of a toxic protein that they believe to be responsible for the devastating memory loss found in individuals suffering from Alzheimer’s disease.



An understanding of this key molecular link in the progression of Alzheimer’s could lead to the development of new therapeutic drugs capable of reversing memory loss in patients who are treated early, in addition to preventing or delaying the disease. Help for individuals with pre-Alzheimer’s memory failure (mild cognitive impairment) also is envisioned. The findings will be published online by the Proceedings of the National Academy of Sciences during the week of Aug. 18.

The research team, led by William L. Klein, professor of neurobiology and physiology, found up to 70 times more small, soluble aggregated proteins called "amyloid b-derived diffusible ligands" (ADDLs, pronounced "addles") in the brain tissue of individuals with Alzheimer’s disease compared to that of normal individuals.


The clinical data strongly support a recent theory in which ADDLs accumulate at the beginning of Alzheimer’s disease and block memory function by a process predicted to be reversible. ADDLs have the ability to attack the memory-building activity of synapses, points of communication where neurons exchange information, without killing neurons.

"Researchers for more than a decade thought it was big molecules, the ’amyloid fibrils,’ that caused memory problems, but we think the real culprits are extremely small molecules, what we call ADDLs," said Klein, who is a member of Northwestern’s Cognitive Neurology and Alzheimer’s Disease Center. "Now we’ve shown that ADDLs are present in humans and are a clinically valid part of Alzheimer’s pathology. If we can develop drugs that target and neutralize these neurotoxins, it might be possible to not only slow down memory loss, but to actually reverse it, to bring memory function back to normal."

Although both are a form of amyloid beta, ADDLs and their properties differ significantly from the amyloid fibrils (known as plaques) that are a diagnostic hallmark of Alzheimer’s. ADDLs found in human brains, mostly 12 or 24 amyloid beta proteins clumped together, are tiny and undetectable in conventional neuropathology; fibrils are much, much larger. While fibrils are immobile toxic waste dumps, ADDLs are soluble and diffuse between brain cells until they find vulnerable synapses. (Single pieces of amyloid beta protein in the brain is normal.)

"The difference between ADDLs and fibrils is like comparing four eggs, over easy, to an enormous omelet that could feed the entire Chicago Bears team," said Klein. ""You start with eggs, but the final product taste, texture and size are all different."

The existence of ADDLs may help explain the poor correlation between plaques and neurological deficits. Studies by other researchers have shown a reversal of memory failure in mouse models treated with amyloid beta antibodies -- but without any reduction in plaque. The antibodies appear to restore memory because they neutralize ADDLs, which Klein’s group has found in mouse models with Alzheimer’s as well as in human brains with Alzheimer’s.

Klein’s research team recently began a study funded by the National Institutes of Health to continue investigating ADDLs in humans and further characterize these molecules. In addition to Alzheimer’s disease, ADDL-like molecules could be the cause of other degenerative diseases.

Klein also is working with researchers at Northwestern’s Institute for Nanotechnology on clinical diagnostics capable of detecting ADDLs in blood or cerebral spinal fluid. Currently diagnosis of Alzheimer’s is based primarily on a battery of psychological tests.

"Now that ADDLs have been discovered in humans we would like to develop effective diagnostics and that means employing nanotechnology," said Klein. "That’s because ADDLs are present in very low concentrations, and nanotechnology has the potential to provide the ultra-sensitive assays needed for the clinic."

Klein, Grant A. Krafft, formerly at Northwestern University Medical School and now chief scientific officer at Acumen Pharmaceuticals, Inc., and Caleb E. Finch, professor of biological sciences and gerontology at the University of Southern California, reported the discovery of ADDLs in 1998. Krafft and Finch are co-authors on the PNAS paper. Northwestern and USC hold joint patents on the composition and use of ADDLs in neurodisorders.

The patent rights have been licensed to Acumen Pharmaceuticals, based in Glenview, Ill., for the development of drugs that treat Alzheimer’s disease and other memory-related disorders. Clinical trials could be two or three years away.

In addition to Klein, Krafft and Finch, other authors on the paper are Yuesong Gong (lead author), Lei Chang, Kirsten L. Viola, Pascale N. Lacor and Mary P. Lambert, from Northwestern University.


The research was supported by the National Institutes of Health, the Boothroyd, Feiger and French foundations, and the Institute for the Study of Aging.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>