Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic protein could explain Alzheimer’s and lead to breakthroughs

19.08.2003


Researchers at Northwestern University have discovered for the first time in humans the presence of a toxic protein that they believe to be responsible for the devastating memory loss found in individuals suffering from Alzheimer’s disease.



An understanding of this key molecular link in the progression of Alzheimer’s could lead to the development of new therapeutic drugs capable of reversing memory loss in patients who are treated early, in addition to preventing or delaying the disease. Help for individuals with pre-Alzheimer’s memory failure (mild cognitive impairment) also is envisioned. The findings will be published online by the Proceedings of the National Academy of Sciences during the week of Aug. 18.

The research team, led by William L. Klein, professor of neurobiology and physiology, found up to 70 times more small, soluble aggregated proteins called "amyloid b-derived diffusible ligands" (ADDLs, pronounced "addles") in the brain tissue of individuals with Alzheimer’s disease compared to that of normal individuals.


The clinical data strongly support a recent theory in which ADDLs accumulate at the beginning of Alzheimer’s disease and block memory function by a process predicted to be reversible. ADDLs have the ability to attack the memory-building activity of synapses, points of communication where neurons exchange information, without killing neurons.

"Researchers for more than a decade thought it was big molecules, the ’amyloid fibrils,’ that caused memory problems, but we think the real culprits are extremely small molecules, what we call ADDLs," said Klein, who is a member of Northwestern’s Cognitive Neurology and Alzheimer’s Disease Center. "Now we’ve shown that ADDLs are present in humans and are a clinically valid part of Alzheimer’s pathology. If we can develop drugs that target and neutralize these neurotoxins, it might be possible to not only slow down memory loss, but to actually reverse it, to bring memory function back to normal."

Although both are a form of amyloid beta, ADDLs and their properties differ significantly from the amyloid fibrils (known as plaques) that are a diagnostic hallmark of Alzheimer’s. ADDLs found in human brains, mostly 12 or 24 amyloid beta proteins clumped together, are tiny and undetectable in conventional neuropathology; fibrils are much, much larger. While fibrils are immobile toxic waste dumps, ADDLs are soluble and diffuse between brain cells until they find vulnerable synapses. (Single pieces of amyloid beta protein in the brain is normal.)

"The difference between ADDLs and fibrils is like comparing four eggs, over easy, to an enormous omelet that could feed the entire Chicago Bears team," said Klein. ""You start with eggs, but the final product taste, texture and size are all different."

The existence of ADDLs may help explain the poor correlation between plaques and neurological deficits. Studies by other researchers have shown a reversal of memory failure in mouse models treated with amyloid beta antibodies -- but without any reduction in plaque. The antibodies appear to restore memory because they neutralize ADDLs, which Klein’s group has found in mouse models with Alzheimer’s as well as in human brains with Alzheimer’s.

Klein’s research team recently began a study funded by the National Institutes of Health to continue investigating ADDLs in humans and further characterize these molecules. In addition to Alzheimer’s disease, ADDL-like molecules could be the cause of other degenerative diseases.

Klein also is working with researchers at Northwestern’s Institute for Nanotechnology on clinical diagnostics capable of detecting ADDLs in blood or cerebral spinal fluid. Currently diagnosis of Alzheimer’s is based primarily on a battery of psychological tests.

"Now that ADDLs have been discovered in humans we would like to develop effective diagnostics and that means employing nanotechnology," said Klein. "That’s because ADDLs are present in very low concentrations, and nanotechnology has the potential to provide the ultra-sensitive assays needed for the clinic."

Klein, Grant A. Krafft, formerly at Northwestern University Medical School and now chief scientific officer at Acumen Pharmaceuticals, Inc., and Caleb E. Finch, professor of biological sciences and gerontology at the University of Southern California, reported the discovery of ADDLs in 1998. Krafft and Finch are co-authors on the PNAS paper. Northwestern and USC hold joint patents on the composition and use of ADDLs in neurodisorders.

The patent rights have been licensed to Acumen Pharmaceuticals, based in Glenview, Ill., for the development of drugs that treat Alzheimer’s disease and other memory-related disorders. Clinical trials could be two or three years away.

In addition to Klein, Krafft and Finch, other authors on the paper are Yuesong Gong (lead author), Lei Chang, Kirsten L. Viola, Pascale N. Lacor and Mary P. Lambert, from Northwestern University.


The research was supported by the National Institutes of Health, the Boothroyd, Feiger and French foundations, and the Institute for the Study of Aging.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>