Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researcher discovers "brain temperature tunnel"

16.07.2003


Yale researcher M. Marc Abreu, M.D., has identified an area of the brain he calls the brain temperature tunnel, which transmits brain temperature to an area of skin and has the potential to prevent death from heat stroke and hypothermia, and detect infectious diseases such as Severe Acute Respiratory Syndrome (SARS).

Abreu, a postdoctoral fellow in the Department of Ophthalmology at Yale School of Medicine, found that a small area of skin near the eyes and the nose is the point of entry for the brain temperature tunnel. His research shows that this area is connected to a thermal storage center in the brain, and the area has the thinnest skin and the highest amount of light energy. He has constructed patches and eyeglasses designed to continuously measure brain temperature at this entry point.

Unlike other vital signs like heart rate, blood pressure and respiratory rate, which can be monitored continuously, core body temperature measurement cannot be currently measured continuously and non-invasively.



"With the discovery of the brain temperature tunnel, sunglasses and eyeglasses will serve not only visual function, but also functions that sustain and enhance human life and performance," said Abreu.

Abreu said this discovery could impact a host of health issues such as athletic performance and training, enhancing safety and performance of athletes, firefighters, members of the military and outdoor recreationists. Abreu said the discovery could also help protect the world food supply and improve food safety by continuous monitoring of infectious diseases in animals such as foot-and-mouth disease, bovine tuberculosis, anthrax and mad cow disease.

For those who are sick at home and in hospitals, Abreu said this discovery could also provide continuous temperature monitoring without the need for nurse intervention. "One of the most important causes of death is hospital infection, which kills more than 100,000 patients a year in the United States," said Abreu. "The inability to detect temperature changes in a timely fashion can lead to spread of infection and even cause death. Monitoring the brain temperature tunnel can detect infection early, so timely therapy can be administered and complications prevented."

Abreu said, "The brain temperature tunnel has enabled the creation of systems that enhance performance while maximizing safety in hot or cold temperatures and preventing dehydration or overhydration."

Abreu explains that when athletes, military personnel, construction workers and firefighters die from heat stroke, it is because the brain temperature rises rapidly to dangerous levels and lack of timely detection and intervention causes brain damage. He further explains that physical performance is decreased because the blood is used for cooling the body. The high temperature in the brain can also lead to thermal induced injury and impaired cognitive function.

"Monitoring brain temperature will also enable women to use a natural method for tracking fertility and birth control," said Abreu. "Automated detection of ovulation can also enhance programs for artificial insemination in animals on dairy farms and in zoos."

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>