Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Rochester scientists test new method to attack cancer

15.07.2003


Scientists have used a technique called RNA interference to impair cancer cells’ ability to produce a key enzyme called telomerase. The enzyme, present in most major types of cancer cells, gives cells the lethal ability to divide rampantly without dying. The laboratory experiments create an opportunity for researchers who are focusing on telomerase in a bid to develop a drug like none ever developed - one capable of killing 85 percent of cancers



The research, led by Peter T. Rowley, M.D., of the University of Rochester Medical Center, is being presented today at the annual meeting of the American Association for Cancer Research in Washington, D.C.

The enzyme telomerase produces telomeres, located at the ends of each chromosome, which protect the ends of chromosomes as cells divide. In a normal cell, the telomeres shorten each time the cell divides. After a cell divides 50 to 100 times, the telomeres shorten so much that they can no longer protect the chromosome, and the cell eventually dies.


Scientists believe that such cell death is normal, even healthy. But as a healthy cell turns cancerous, a genetic mutation triggers the production of telomerase, which restores the telomeres to normal length. The restored telomeres enable the cell to divide, unchecked, thousands of times instead of the usual 50 to 100. Over time, a few cancer cells can multiply into a golf-ball-sized tumor or spread to other parts of the body.

Since researchers discovered the important role telomerase plays in most cancers in the mid-1990s, much attention has been focused on finding a way to attack them. Several methods are in various stages of development.

The University of Rochester team used RNA interference to disrupt the production of telomerase in various cancer cells including colon, skin, cervical, and lung cancer. They crafted tiny snippets of double-stranded RNA, tailored to seek out the chemical message in the cell that conveys the instructions for making telomerase. Those snippets attracted enzymes and, together, they sought out and destroyed the cells’ chemical messages for making telomerase.

The technique reduced – but didn’t fully block – the production of telomerase. But with the cells’ supply of telomerase decreased, the telomeres at the ends of the chromosomes began to shorten. Over 75 days, the telomeres were shortened by as much as 85 percent. Rowley believes that if the experiment had been continued, the telomeres would have been shortened so much that all the cancer cells in the experiment would have died.

"If we can develop a therapy that prevents cancer cells from making telomerase, we may have a therapy that is effective against most cancers," said Rowley. "There are several hurdles we have to overcome before we can bring such a therapy to patients. Nonetheless, telomerase appears to be the most promising target we have in the search for an agent that is broadly effective against most forms of cancer."

Among the hurdles Rowley and other researchers are addressing is the possibility that RNA injected into the body could be broken down by enzymes before it reaches a patient’s cancer cells. Rowley plans a new series of experiments in mice to explore that possibility and devise a strategy to overcome it.


The research was funded by grants from the National Institutes of Health, the National Leukemia Research Association, and the Elsa U. Pardee Foundation.

Christopher DiFrancesco | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>