Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Rochester scientists test new method to attack cancer

15.07.2003


Scientists have used a technique called RNA interference to impair cancer cells’ ability to produce a key enzyme called telomerase. The enzyme, present in most major types of cancer cells, gives cells the lethal ability to divide rampantly without dying. The laboratory experiments create an opportunity for researchers who are focusing on telomerase in a bid to develop a drug like none ever developed - one capable of killing 85 percent of cancers



The research, led by Peter T. Rowley, M.D., of the University of Rochester Medical Center, is being presented today at the annual meeting of the American Association for Cancer Research in Washington, D.C.

The enzyme telomerase produces telomeres, located at the ends of each chromosome, which protect the ends of chromosomes as cells divide. In a normal cell, the telomeres shorten each time the cell divides. After a cell divides 50 to 100 times, the telomeres shorten so much that they can no longer protect the chromosome, and the cell eventually dies.


Scientists believe that such cell death is normal, even healthy. But as a healthy cell turns cancerous, a genetic mutation triggers the production of telomerase, which restores the telomeres to normal length. The restored telomeres enable the cell to divide, unchecked, thousands of times instead of the usual 50 to 100. Over time, a few cancer cells can multiply into a golf-ball-sized tumor or spread to other parts of the body.

Since researchers discovered the important role telomerase plays in most cancers in the mid-1990s, much attention has been focused on finding a way to attack them. Several methods are in various stages of development.

The University of Rochester team used RNA interference to disrupt the production of telomerase in various cancer cells including colon, skin, cervical, and lung cancer. They crafted tiny snippets of double-stranded RNA, tailored to seek out the chemical message in the cell that conveys the instructions for making telomerase. Those snippets attracted enzymes and, together, they sought out and destroyed the cells’ chemical messages for making telomerase.

The technique reduced – but didn’t fully block – the production of telomerase. But with the cells’ supply of telomerase decreased, the telomeres at the ends of the chromosomes began to shorten. Over 75 days, the telomeres were shortened by as much as 85 percent. Rowley believes that if the experiment had been continued, the telomeres would have been shortened so much that all the cancer cells in the experiment would have died.

"If we can develop a therapy that prevents cancer cells from making telomerase, we may have a therapy that is effective against most cancers," said Rowley. "There are several hurdles we have to overcome before we can bring such a therapy to patients. Nonetheless, telomerase appears to be the most promising target we have in the search for an agent that is broadly effective against most forms of cancer."

Among the hurdles Rowley and other researchers are addressing is the possibility that RNA injected into the body could be broken down by enzymes before it reaches a patient’s cancer cells. Rowley plans a new series of experiments in mice to explore that possibility and devise a strategy to overcome it.


The research was funded by grants from the National Institutes of Health, the National Leukemia Research Association, and the Elsa U. Pardee Foundation.

Christopher DiFrancesco | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>