Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pancreatic cancer linked to errant reactivation of embryo cell pathway

24.06.2003


Research by Johns Hopkins Kimmel Cancer Center specialists has uncovered a novel pathway in the origin of pancreatic cancers, one of the deadliest of malignancies. Their findings are reported in the June 23, 2003, issue of Cancer Cell.



Working with cancer cells from 55 patients, the Hopkins team found that a growth signal normally turned off in adult tissues is mistakenly turned back on after injury or inflammation of the pancreas. "We think reactivation may be a first step in initiating pancreatic cancer, well before the onset of any alterations to the pancreatic cells’ genetic material," says Steven D. Leach, M.D., Paul K. Neumann Professor in Pancreatic Cancer at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and director of the study.

The Notch pathway, when functioning normally, regulates embryonic development in a wide variety of organisms, ranging from fruit flies to humans. In adult tissues, the pathway becomes dormant as cells become differentiated to perform specialized functions. But, when the pancreas is injured or diseased, Notch signaling may be reactivated in the adult pancreas, resulting in conversion of adult pancreas cells to cells similar to those seen in embryonic pancreas. These primitive cells accumulate in the epithelium, or lining, of the pancreas, setting the stage for the additional genetic changes that lead to cancer. "Using drugs to deactivate the Notch pathway could prevent these cancer-causing events from occurring," says Leach.


When the researchers evaluated the pancreatic cancer samples at the genetic level, little to no activity of the Notch pathway was observed in normal pancreatic cells, while increased activity was seen in cancer cells and cells in the inflamed pancreas. In addition, the investigators found that when Notch signaling was blocked in test tube studies, they were able to prevent the early cellular changes leading to pancreatic cancer.

The investigators are now attempting to block Notch signaling in mouse models in hopes of developing a strategy for human pancreatic cancer prevention. "Curing pancreatic cancer is difficult. Few patients survive past five years. Preventing it may be the best path to pursue," says Leach.

Pancreatic cancer has one of the lowest survival rates among all cancers. Each year, approximately 30,300 Americans are diagnosed with the disease, and nearly 30,000 die. Often unresponsive to conventional therapies, pancreatic cancer is the fourth leading cause of cancer death.

In addition to Leach, other investigators include Yoshiharu Miyamoto, Anirban Maitra, Bidyu Ghosh, Ulrich Zechner, Pedram Argani, Christine A. Iacobuzio-Donahue, Virote Sriuranpong, Tatsuya Iso, Ingrid M. Meszoely, Michael S. Wolfe, Ralph H. Hruban, Douglas W. Ball, and Roland M. Schmid.

Valerie Mehl | EurekAlert!
Further information:
http://www.hopkinsmedicine.org
http://www.quad-net.com

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>