Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pancreatic cancer linked to errant reactivation of embryo cell pathway

24.06.2003


Research by Johns Hopkins Kimmel Cancer Center specialists has uncovered a novel pathway in the origin of pancreatic cancers, one of the deadliest of malignancies. Their findings are reported in the June 23, 2003, issue of Cancer Cell.



Working with cancer cells from 55 patients, the Hopkins team found that a growth signal normally turned off in adult tissues is mistakenly turned back on after injury or inflammation of the pancreas. "We think reactivation may be a first step in initiating pancreatic cancer, well before the onset of any alterations to the pancreatic cells’ genetic material," says Steven D. Leach, M.D., Paul K. Neumann Professor in Pancreatic Cancer at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and director of the study.

The Notch pathway, when functioning normally, regulates embryonic development in a wide variety of organisms, ranging from fruit flies to humans. In adult tissues, the pathway becomes dormant as cells become differentiated to perform specialized functions. But, when the pancreas is injured or diseased, Notch signaling may be reactivated in the adult pancreas, resulting in conversion of adult pancreas cells to cells similar to those seen in embryonic pancreas. These primitive cells accumulate in the epithelium, or lining, of the pancreas, setting the stage for the additional genetic changes that lead to cancer. "Using drugs to deactivate the Notch pathway could prevent these cancer-causing events from occurring," says Leach.


When the researchers evaluated the pancreatic cancer samples at the genetic level, little to no activity of the Notch pathway was observed in normal pancreatic cells, while increased activity was seen in cancer cells and cells in the inflamed pancreas. In addition, the investigators found that when Notch signaling was blocked in test tube studies, they were able to prevent the early cellular changes leading to pancreatic cancer.

The investigators are now attempting to block Notch signaling in mouse models in hopes of developing a strategy for human pancreatic cancer prevention. "Curing pancreatic cancer is difficult. Few patients survive past five years. Preventing it may be the best path to pursue," says Leach.

Pancreatic cancer has one of the lowest survival rates among all cancers. Each year, approximately 30,300 Americans are diagnosed with the disease, and nearly 30,000 die. Often unresponsive to conventional therapies, pancreatic cancer is the fourth leading cause of cancer death.

In addition to Leach, other investigators include Yoshiharu Miyamoto, Anirban Maitra, Bidyu Ghosh, Ulrich Zechner, Pedram Argani, Christine A. Iacobuzio-Donahue, Virote Sriuranpong, Tatsuya Iso, Ingrid M. Meszoely, Michael S. Wolfe, Ralph H. Hruban, Douglas W. Ball, and Roland M. Schmid.

Valerie Mehl | EurekAlert!
Further information:
http://www.hopkinsmedicine.org
http://www.quad-net.com

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>