Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pancreatic cancer linked to errant reactivation of embryo cell pathway

24.06.2003


Research by Johns Hopkins Kimmel Cancer Center specialists has uncovered a novel pathway in the origin of pancreatic cancers, one of the deadliest of malignancies. Their findings are reported in the June 23, 2003, issue of Cancer Cell.



Working with cancer cells from 55 patients, the Hopkins team found that a growth signal normally turned off in adult tissues is mistakenly turned back on after injury or inflammation of the pancreas. "We think reactivation may be a first step in initiating pancreatic cancer, well before the onset of any alterations to the pancreatic cells’ genetic material," says Steven D. Leach, M.D., Paul K. Neumann Professor in Pancreatic Cancer at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and director of the study.

The Notch pathway, when functioning normally, regulates embryonic development in a wide variety of organisms, ranging from fruit flies to humans. In adult tissues, the pathway becomes dormant as cells become differentiated to perform specialized functions. But, when the pancreas is injured or diseased, Notch signaling may be reactivated in the adult pancreas, resulting in conversion of adult pancreas cells to cells similar to those seen in embryonic pancreas. These primitive cells accumulate in the epithelium, or lining, of the pancreas, setting the stage for the additional genetic changes that lead to cancer. "Using drugs to deactivate the Notch pathway could prevent these cancer-causing events from occurring," says Leach.


When the researchers evaluated the pancreatic cancer samples at the genetic level, little to no activity of the Notch pathway was observed in normal pancreatic cells, while increased activity was seen in cancer cells and cells in the inflamed pancreas. In addition, the investigators found that when Notch signaling was blocked in test tube studies, they were able to prevent the early cellular changes leading to pancreatic cancer.

The investigators are now attempting to block Notch signaling in mouse models in hopes of developing a strategy for human pancreatic cancer prevention. "Curing pancreatic cancer is difficult. Few patients survive past five years. Preventing it may be the best path to pursue," says Leach.

Pancreatic cancer has one of the lowest survival rates among all cancers. Each year, approximately 30,300 Americans are diagnosed with the disease, and nearly 30,000 die. Often unresponsive to conventional therapies, pancreatic cancer is the fourth leading cause of cancer death.

In addition to Leach, other investigators include Yoshiharu Miyamoto, Anirban Maitra, Bidyu Ghosh, Ulrich Zechner, Pedram Argani, Christine A. Iacobuzio-Donahue, Virote Sriuranpong, Tatsuya Iso, Ingrid M. Meszoely, Michael S. Wolfe, Ralph H. Hruban, Douglas W. Ball, and Roland M. Schmid.

Valerie Mehl | EurekAlert!
Further information:
http://www.hopkinsmedicine.org
http://www.quad-net.com

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>