Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study identifies protective mechanism against alcohol-induced embryo toxicity

10.06.2003


Researchers have identified a mechanism by which the eight amino acid peptide NAP, an active fragment of a neuroprotective brain protein, protects against alcohol-induced embryo toxicity and growth retardation in mice. Their findings bring alcohol researchers a critical step closer to developing pharmacologic agents to prevent alcohol-induced fetal damage. The study, funded by the National Institutes of Health’s National Institute on Alcohol Abuse and Alcoholism (NIAAA), the National Institute of Child Health and Human Development (NICHD), and the Medical Research Service, Department of Veterans Affairs, appears in the current issue of the Proceedings of the National Academy of Sciences.*



The researchers produced NAP derivatives with specific substitutions and screened the compounds in cultured rat neurons for their protection against cell toxins and in whole mouse embryos for their protection against alcohol. By manipulating NAP’s structure and thereby altering its activity, the researchers were able to examine the ability of the different NAP derivatives to block alcohol inhibition of the L1 cell adhesion molecule. Their results indicate that NAP protects mouse embryos from alcohol toxicity by blocking alcohol effects on L1 rather than by its broad neuroprotective actions.

"This elegant study demonstrates that the protective effect of NAP against alcohol damage differs from that of NAP against neurotoxins, said Ting-Kai Li, M.D., Director, National Institute on Alcohol Abuse and Alcoholism. "Ethanol inhibition of L1 is now strongly implicated in the pathogenesis of fetal alcohol damage and a foremost target of medication development."


Michael Charness, M.D., of the Veterans Administration Boston Healthcare System and Department of Neurology, Harvard Medical School, headed up the study, with colleagues from the NICHD and the University of North Carolina Bowles Center for Alcohol Studies.

NAP, technically known as NAPVSIPQ, is known to be protective in minute concentrations against a wide array of neural insults and recently was shown to prevent alcohol-induced fetal wastage and growth deficits in mice. In September 2002, Dr. Charness with other colleagues reported that NAP also blocks alcohol’s inhibitory effects on cell-cell aggregation (the clustering of fetal cells destined to become the brain and nervous system) as mediated by the cell adhesion molecule known as L1. Whether NAP’s broader neuroprotective action or its specific effects on cell adhesion were responsible for preventing fetal damage remained to be determined.

The leading preventable cause of mental retardation in the United States, fetal alcohol syndrome affects about 1 in 1,000 U.S. infants and about 6 percent of children born to alcoholic women. Fetal alcohol syndrome imposes lifetime economic costs estimated at $1.8 million per child in health care and indirect costs such as lost productivity.

Ann Bradley | EurekAlert!
Further information:
http://www.niaaa.nih.gov/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>