Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study identifies protective mechanism against alcohol-induced embryo toxicity

10.06.2003


Researchers have identified a mechanism by which the eight amino acid peptide NAP, an active fragment of a neuroprotective brain protein, protects against alcohol-induced embryo toxicity and growth retardation in mice. Their findings bring alcohol researchers a critical step closer to developing pharmacologic agents to prevent alcohol-induced fetal damage. The study, funded by the National Institutes of Health’s National Institute on Alcohol Abuse and Alcoholism (NIAAA), the National Institute of Child Health and Human Development (NICHD), and the Medical Research Service, Department of Veterans Affairs, appears in the current issue of the Proceedings of the National Academy of Sciences.*



The researchers produced NAP derivatives with specific substitutions and screened the compounds in cultured rat neurons for their protection against cell toxins and in whole mouse embryos for their protection against alcohol. By manipulating NAP’s structure and thereby altering its activity, the researchers were able to examine the ability of the different NAP derivatives to block alcohol inhibition of the L1 cell adhesion molecule. Their results indicate that NAP protects mouse embryos from alcohol toxicity by blocking alcohol effects on L1 rather than by its broad neuroprotective actions.

"This elegant study demonstrates that the protective effect of NAP against alcohol damage differs from that of NAP against neurotoxins, said Ting-Kai Li, M.D., Director, National Institute on Alcohol Abuse and Alcoholism. "Ethanol inhibition of L1 is now strongly implicated in the pathogenesis of fetal alcohol damage and a foremost target of medication development."


Michael Charness, M.D., of the Veterans Administration Boston Healthcare System and Department of Neurology, Harvard Medical School, headed up the study, with colleagues from the NICHD and the University of North Carolina Bowles Center for Alcohol Studies.

NAP, technically known as NAPVSIPQ, is known to be protective in minute concentrations against a wide array of neural insults and recently was shown to prevent alcohol-induced fetal wastage and growth deficits in mice. In September 2002, Dr. Charness with other colleagues reported that NAP also blocks alcohol’s inhibitory effects on cell-cell aggregation (the clustering of fetal cells destined to become the brain and nervous system) as mediated by the cell adhesion molecule known as L1. Whether NAP’s broader neuroprotective action or its specific effects on cell adhesion were responsible for preventing fetal damage remained to be determined.

The leading preventable cause of mental retardation in the United States, fetal alcohol syndrome affects about 1 in 1,000 U.S. infants and about 6 percent of children born to alcoholic women. Fetal alcohol syndrome imposes lifetime economic costs estimated at $1.8 million per child in health care and indirect costs such as lost productivity.

Ann Bradley | EurekAlert!
Further information:
http://www.niaaa.nih.gov/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>