Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse study identifies protective mechanism against alcohol-induced embryo toxicity


Researchers have identified a mechanism by which the eight amino acid peptide NAP, an active fragment of a neuroprotective brain protein, protects against alcohol-induced embryo toxicity and growth retardation in mice. Their findings bring alcohol researchers a critical step closer to developing pharmacologic agents to prevent alcohol-induced fetal damage. The study, funded by the National Institutes of Health’s National Institute on Alcohol Abuse and Alcoholism (NIAAA), the National Institute of Child Health and Human Development (NICHD), and the Medical Research Service, Department of Veterans Affairs, appears in the current issue of the Proceedings of the National Academy of Sciences.*

The researchers produced NAP derivatives with specific substitutions and screened the compounds in cultured rat neurons for their protection against cell toxins and in whole mouse embryos for their protection against alcohol. By manipulating NAP’s structure and thereby altering its activity, the researchers were able to examine the ability of the different NAP derivatives to block alcohol inhibition of the L1 cell adhesion molecule. Their results indicate that NAP protects mouse embryos from alcohol toxicity by blocking alcohol effects on L1 rather than by its broad neuroprotective actions.

"This elegant study demonstrates that the protective effect of NAP against alcohol damage differs from that of NAP against neurotoxins, said Ting-Kai Li, M.D., Director, National Institute on Alcohol Abuse and Alcoholism. "Ethanol inhibition of L1 is now strongly implicated in the pathogenesis of fetal alcohol damage and a foremost target of medication development."

Michael Charness, M.D., of the Veterans Administration Boston Healthcare System and Department of Neurology, Harvard Medical School, headed up the study, with colleagues from the NICHD and the University of North Carolina Bowles Center for Alcohol Studies.

NAP, technically known as NAPVSIPQ, is known to be protective in minute concentrations against a wide array of neural insults and recently was shown to prevent alcohol-induced fetal wastage and growth deficits in mice. In September 2002, Dr. Charness with other colleagues reported that NAP also blocks alcohol’s inhibitory effects on cell-cell aggregation (the clustering of fetal cells destined to become the brain and nervous system) as mediated by the cell adhesion molecule known as L1. Whether NAP’s broader neuroprotective action or its specific effects on cell adhesion were responsible for preventing fetal damage remained to be determined.

The leading preventable cause of mental retardation in the United States, fetal alcohol syndrome affects about 1 in 1,000 U.S. infants and about 6 percent of children born to alcoholic women. Fetal alcohol syndrome imposes lifetime economic costs estimated at $1.8 million per child in health care and indirect costs such as lost productivity.

Ann Bradley | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>