Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staph infection process leading to B cell suicide described by UCSD researchers

28.04.2003


The method that Staphylococcus aureus (staph) infection uses to inactivate the body’s immune response and cause previously healthy B cells to commit suicide, is described for the first time by researchers at the University of California, San Diego (UCSD) School of Medicine in the May 5, 2003 issue of the Journal of Experimental Medicine. The paper was selected for early online publication on April 28.



Normally, B cells mount an early defense against invading bacteria. From this immunologic experience, memory B cells are developed with the ability to quickly recognize these antigens and destroy the bacteria if they return in the future. When staph infections occur, however, this important process for immune defense can be corrupted.

In studies with mice, the researchers found that a staph protein, called SpA, acts like a B cell toxin because it mounts a pre-emptive attack to target a specific region on the antigen receptors of B cells, which ultimately causes their death. Although the B cells begin to respond, they are quickly shut down, as the SpA de-activates these B cell antigen receptors, and there is also loss of other surface molecules such as CD19 and CD21, which are important for amplifying immune responses. Then, within a few hours, the SpA toxin induces B cells to turn on themselves in a programmed suicide process called apoptosis. As a direct consequence, the B cells never get a chance to develop the memory cells necessary to recognize and fight future staph infections.


"This mechanism may explain why staph infections are so common and why many people get them recurrently," said Gregg Silverman, M.D., UCSD professor of medicine and senior author of the paper.

He noted that apoptosis usually takes place on a regular basis in a small proportion of cells to control the size of lymphocyte populations and maintain homeostasis, to keep a balance in the internal equilibrium of body. However, SpA co-opts the normal apoptosis process, in effect killing the B cells too early, before they’ve had a chance to do their job.

"Inappropriate mechanisms of induced apoptosis are not unique to many infections," Silverman said. "However, we should be able to use the same process induced by SpA, to treat the disease-causing B cells in autoimmune diseases and cancers like leukemia and lymphoma. These studies may also help us to make protective vaccines against staph."

In follow up studies, the Silverman team will examine people with staph infections to verify that the same process takes place and that it prevents individuals from defending against staph infections. In addition, the investigators are planning a clinical trial in one to two years to treat patients that have autoimmune diseases such as lupus, that occur due to faulty B cells.

Sue Pondrom | EurekAlert!
Further information:
http://health.ucsd.edu/news/2002/04_23_Silverman.html
http://medicine.ucsd.edu/rdcc/silverman.shtml
http://cancer.ucsd.edu/summaries/gsilverman.htm

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>