Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers develop non-invasive glucose sensor

15.04.2003


Millions of people suffering from diabetes mellitus may be spared the ordeal of pricking their fingers several times a day to test blood sugar levels, thanks to a breakthrough by University of Pittsburgh researchers who have developed a non-invasive method to measure the glucose level in bodily fluids.



Researchers Sanford A. Asher, Ph.D., professor of chemistry in the faculty and College of Arts and Sciences, and David Finegold, M.D., professor of pediatrics in the School of Medicine, created a thin plastic sensor that changes color based on the concentrations of glucose.

The sensor material, which would be worn like a contact lens, was described in a paper published in the online version of Analytical Chemistry on April 11. The paper is scheduled to be published in the print version of Analytical Chemistry, a publication of the American Chemical Society, on May 1.


"There has been a increasing demand for continuous, non-invasive glucose monitoring due to the increasing number of people diagnosed with diabetes mellitus and the recognition that the long-term outcome of these patients can be dramatically improved by careful glucose monitoring and control," said Dr. Asher.

"The current method of testing glucose in diabetes patients-by drawing blood from a finger prick-is uncomfortable and is dependent on patient skill and compliance for regular testing," said Dr. Finegold.

The researchers plan to embed the sensing material into contact lenses worn in the patients’ eyes. Patients will determine their glucose levels by looking into a mirror-similar to women’s makeup compact mirrors, but with a color chart to indicate glucose concentrations-to compare the color of the sensing material with the chart.

The sensor will change from red, which indicates dangerously low glucose concentrations, to violet, which will indicate dangerously high glucose concentrations. When the glucose level is normal, the sensor will be green. The researchers are still determining the number of detectable gradations, but expect that it may be as high as the finger stick meters currently provide.

The University of Pittsburgh, which owns this patented technology, has licensed this technology to a new startup company that will engineer the material and commercialize it. The researchers believe the product is at least a year from being tested in humans. The researchers expect that their technology would be able to be incorporated into currently available commercial contact lenses, which would be replaced weekly.


###
CONTACT: Jocelyn Uhl
PHONE: 412-647-3555
E-MAIL: UhlJH@upmc.edu

CONTACT: John Fedele
PHONE: 412-624-4148
E-MAIL: JFedele@pitt.edu


Jocelyn Uhl | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>