Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers develop non-invasive glucose sensor

15.04.2003


Millions of people suffering from diabetes mellitus may be spared the ordeal of pricking their fingers several times a day to test blood sugar levels, thanks to a breakthrough by University of Pittsburgh researchers who have developed a non-invasive method to measure the glucose level in bodily fluids.



Researchers Sanford A. Asher, Ph.D., professor of chemistry in the faculty and College of Arts and Sciences, and David Finegold, M.D., professor of pediatrics in the School of Medicine, created a thin plastic sensor that changes color based on the concentrations of glucose.

The sensor material, which would be worn like a contact lens, was described in a paper published in the online version of Analytical Chemistry on April 11. The paper is scheduled to be published in the print version of Analytical Chemistry, a publication of the American Chemical Society, on May 1.


"There has been a increasing demand for continuous, non-invasive glucose monitoring due to the increasing number of people diagnosed with diabetes mellitus and the recognition that the long-term outcome of these patients can be dramatically improved by careful glucose monitoring and control," said Dr. Asher.

"The current method of testing glucose in diabetes patients-by drawing blood from a finger prick-is uncomfortable and is dependent on patient skill and compliance for regular testing," said Dr. Finegold.

The researchers plan to embed the sensing material into contact lenses worn in the patients’ eyes. Patients will determine their glucose levels by looking into a mirror-similar to women’s makeup compact mirrors, but with a color chart to indicate glucose concentrations-to compare the color of the sensing material with the chart.

The sensor will change from red, which indicates dangerously low glucose concentrations, to violet, which will indicate dangerously high glucose concentrations. When the glucose level is normal, the sensor will be green. The researchers are still determining the number of detectable gradations, but expect that it may be as high as the finger stick meters currently provide.

The University of Pittsburgh, which owns this patented technology, has licensed this technology to a new startup company that will engineer the material and commercialize it. The researchers believe the product is at least a year from being tested in humans. The researchers expect that their technology would be able to be incorporated into currently available commercial contact lenses, which would be replaced weekly.


###
CONTACT: Jocelyn Uhl
PHONE: 412-647-3555
E-MAIL: UhlJH@upmc.edu

CONTACT: John Fedele
PHONE: 412-624-4148
E-MAIL: JFedele@pitt.edu


Jocelyn Uhl | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>