Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers develop non-invasive glucose sensor

15.04.2003


Millions of people suffering from diabetes mellitus may be spared the ordeal of pricking their fingers several times a day to test blood sugar levels, thanks to a breakthrough by University of Pittsburgh researchers who have developed a non-invasive method to measure the glucose level in bodily fluids.



Researchers Sanford A. Asher, Ph.D., professor of chemistry in the faculty and College of Arts and Sciences, and David Finegold, M.D., professor of pediatrics in the School of Medicine, created a thin plastic sensor that changes color based on the concentrations of glucose.

The sensor material, which would be worn like a contact lens, was described in a paper published in the online version of Analytical Chemistry on April 11. The paper is scheduled to be published in the print version of Analytical Chemistry, a publication of the American Chemical Society, on May 1.


"There has been a increasing demand for continuous, non-invasive glucose monitoring due to the increasing number of people diagnosed with diabetes mellitus and the recognition that the long-term outcome of these patients can be dramatically improved by careful glucose monitoring and control," said Dr. Asher.

"The current method of testing glucose in diabetes patients-by drawing blood from a finger prick-is uncomfortable and is dependent on patient skill and compliance for regular testing," said Dr. Finegold.

The researchers plan to embed the sensing material into contact lenses worn in the patients’ eyes. Patients will determine their glucose levels by looking into a mirror-similar to women’s makeup compact mirrors, but with a color chart to indicate glucose concentrations-to compare the color of the sensing material with the chart.

The sensor will change from red, which indicates dangerously low glucose concentrations, to violet, which will indicate dangerously high glucose concentrations. When the glucose level is normal, the sensor will be green. The researchers are still determining the number of detectable gradations, but expect that it may be as high as the finger stick meters currently provide.

The University of Pittsburgh, which owns this patented technology, has licensed this technology to a new startup company that will engineer the material and commercialize it. The researchers believe the product is at least a year from being tested in humans. The researchers expect that their technology would be able to be incorporated into currently available commercial contact lenses, which would be replaced weekly.


###
CONTACT: Jocelyn Uhl
PHONE: 412-647-3555
E-MAIL: UhlJH@upmc.edu

CONTACT: John Fedele
PHONE: 412-624-4148
E-MAIL: JFedele@pitt.edu


Jocelyn Uhl | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>