Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of how prolactin travels to gene’s machinery helps explain its role in breast cancer

14.04.2003


Prolactin, a naturally occurring peptide hormone needed for milk production following pregnancy, has been found to play a major role in the development and spread of breast cancer. More recently, Dr. Charles Clevenger, the same researcher who first demonstrated the scope and mechanism of prolactin’s role in cancer, has discovered that prolactin functions directly inside the cell, not merely by sending signals across the cell membrane as had been assumed for it and all other peptide hormones.



Dr. Clevenger also has discovered how prolactin is able to travel across the cell membrane and directly into the DNA machinery of the cell. These findings suggest a pathway through which new therapies could block the growth and spread of breast cancer -- and offer a new paradigm for how other hormones function, not just in breast cancer but in a number of other diseases.

The University of Pennsylvania researcher describes his research at the Experimental Biology 2003 meetings in San Diego. He will be honored by the American Society of Investigative Pathology, at the EB 2003 meeting, with the Pfizer Outstanding Investigator Award. The award honors a decade of steady unraveling, by Dr. Clevenger, of how prolactin works in breast cancer, including this most recent discovery.


Although scientists recognized prolactin was involved with breast cancer in rats as early as the 1970s, they focused solely on the hormone produced by the pituitary gland in the brain. Human trials based on this assumption failed miserably. But in the 1990s, using greatly improved technology and techniques, Dr. Clevenger was able to show that breast tissue itself produces prolactin in significant quantities and that more than 95 percent of all breast cancers express the prolactin receptor, meaning prolactin was active in the tumors. At the same time, a large population study of nurses had found that women with higher levels of prolactin were at greater risk for breast cancer.

Soon thereafter, Dr. Clevenger was able to show how prolactin organized the breast cancer cells to move from the breast to other parts of the body.

His most recent discovery is how prolactin is able to get to the DNA of the cell and what it does there. For years, scientists assumed that as a peptide protein, prolactin worked from a distance, outside the cell (unlike steroid hormones which have the ability to leap across the cell membrane on their own, without any help). And indeed, prolactin does work outside the cell. It binds to prolactin receptors, proteins found at the surface of breast cells. When prolactin locks into the receptors, these receptors send out signals that activate genes to stimulate the production of proteins necessary for either milk production in normal breast cells or cancerous growth and spread in malignant ones.

But Dr. Clevenger did not believe this was the only way prolactin worked. Using breast cancer cells in a petri dish, he showed that prolactin is able to physically enter the cell, travel straight to the cell’s DNA, and directly activate the process that turns on genes and triggers the growth of breast cancer cells. It does this by binding to a protein called cyclophilin B, or CYPB for short. This protein serves as the chaperone (a scientific term as well as a very good descriptor) across the cell membrane and into the DNA. CYPB also is an active partner in turning on the genes critical in the development of cancer.

This is exciting news, says Dr. Clevenger. It means we can target drugs to particular tissues in ways not possible before. His own laboratory has applied mutant forms of the CYPB protein to breast cancer cells in vitro and found that breast cancer cells die and normal cells don’t. He says, "When scientists began to understand the implications of the hormone estrogen on breast cancer, it became possible to develop drugs to combat estrogen’s role. When it comes to combating the role of prolactin in breast cancer, we’re 10 years behind where we are with tamoxifen therapy. But then, with advances in science, what once took 10 years may now only take five years."

The discovery of how prolactin enters the cellular DNA is also exciting because "there is a larger message here than breast cancer," according to Dr. Clevenger. Other laboratories are finding other peptide hormones that wind up in the nucleus: hormones like epidermal growth factor, growth hormone, insulin. They haven’t yet found the mechanism similar to the chaperone protein that works for prolactin, but Dr. Clevenger hopes his findings will provide new therapies for other malignancies and diseases such as diabetes.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>