Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Treatment Boosts Cancer Vaccine

01.04.2003


The first clinical trials of a new type of cancer treatment that releases the “brakes” on immune cells indicate that this approach enhances attacks on tumors while sparing the body’s own tissue.

The results of the phase I clinical trials of cytotoxic T-lymphocyte-associated antigen 4 blockade therapy were published online on April 1, 2003, in the Early Edition of the Proceedings of the National Academy of Sciences. The researchers involved in the study included James Allison, a Howard Hughes Medical Institute investigator at the University of California, Berkeley, Glenn Dranoff, Steven Hodi and colleagues from the Dana-Farber Cancer Institute (DFCI), Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School.

Over the last decade, basic research in Allison’s laboratory and others has shown that the immune-regulating molecule, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), inhibits activated immune system T cells, and prevents them from attacking the body’s own tissues. In studies in mice, Allison and his colleagues identified an antibody that blocks CTLA-4 and showed that it enhances the cancer-fighting activity of certain anti-cancer vaccines. Their research showed that blocking CTLA-4 maintains the response of T cells triggered by the vaccines to attack the cancer.



The success of the experiments in mice prompted the researchers to begin initial clinical studies to test whether they could elicit the same kind of response in humans. The phase I clinical trial — which aimed primarily at establishing the safety of the treatment — included nine patients with advanced cancers who had previously received cancer vaccines.

Three of the patients with metastatic melanoma and two with ovarian cancer had received a vaccine produced by extracting their own cancer cells, engineering the cells to produce the immune-stimulating molecule, granulocyte-macrophage-colony-stimulating factor (GM-CSF), and vaccinating the patients with those cells. This vaccine was developed by Dranoff and his colleagues at DFCI. Four other metastatic melanoma patients had received different vaccines based on immune-stimulating antigens specific to melanomas.

Although the five patients treated with the GM-CSF vaccine had not responded completely to that vaccine, the researchers found clear evidence that the anti-CTLA-4 antibody enhanced the immune system attack on their tumors. However, treatment with the antibodies did not enhance tumor killing in the four melanoma patients treated with the melanoma antigens.

“In the melanoma patients who responded to the anti-CTLA-4 treatment, Dr. Dranoff saw a skin rash, which is a positive reaction,” said Allison. “Such rashes are evidence that the T cells were attacking normal melanocytes in the skin, which is considered a good prognostic sign for people with melanoma. It indicates that the melanoma is being attacked as well. And while the tumor size did not necessarily immediately decrease in these patients, it was clear from pathology studies that tumor cells were being killed and being replaced by these inflammatory T cells.” According to Allison, the patients with ovarian cancer showed an increase in the bloodstream of a marker molecule indicating that the cancer cells were being killed.

Other clinical trials of the anti-CTLA-4 antibody are ongoing, said Allison, and the early results from all the trials make him optimistic that the treatment will prove highly useful. “In my opinion, what is most exciting is that there is no reason that this approach to tumor therapy is limited to any particular kind of cancer,” he said. “However, until we get more experience with the treatment, we should take extreme care before extending CTLA-4 blockade from cancers arising from tissues that are not absolutely essential.”

According to Allison, CTLA-4 blockade could boost anti-cancer immune response to aid several kinds of therapies. “We have preliminary data indicating that the treatment can synergize not only with immunotherapy, but also with radiation and chemotherapy,” he said. “Under circumstances where these treatments also activate the immune system, anti-CTLA-4 therapy could enhance those therapies.”

Allison emphasized that the anti-CTLA-4 antibodies only stimulate the immune system during a narrow window of treatment. “The beauty of this treatment is that the antibodies by themselves are benign. After they clear from the system, immune regulation returns to normal, and the patient is left with an amplified population of anti-tumor T cells.”

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>