Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Treatment Boosts Cancer Vaccine

01.04.2003


The first clinical trials of a new type of cancer treatment that releases the “brakes” on immune cells indicate that this approach enhances attacks on tumors while sparing the body’s own tissue.

The results of the phase I clinical trials of cytotoxic T-lymphocyte-associated antigen 4 blockade therapy were published online on April 1, 2003, in the Early Edition of the Proceedings of the National Academy of Sciences. The researchers involved in the study included James Allison, a Howard Hughes Medical Institute investigator at the University of California, Berkeley, Glenn Dranoff, Steven Hodi and colleagues from the Dana-Farber Cancer Institute (DFCI), Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School.

Over the last decade, basic research in Allison’s laboratory and others has shown that the immune-regulating molecule, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), inhibits activated immune system T cells, and prevents them from attacking the body’s own tissues. In studies in mice, Allison and his colleagues identified an antibody that blocks CTLA-4 and showed that it enhances the cancer-fighting activity of certain anti-cancer vaccines. Their research showed that blocking CTLA-4 maintains the response of T cells triggered by the vaccines to attack the cancer.



The success of the experiments in mice prompted the researchers to begin initial clinical studies to test whether they could elicit the same kind of response in humans. The phase I clinical trial — which aimed primarily at establishing the safety of the treatment — included nine patients with advanced cancers who had previously received cancer vaccines.

Three of the patients with metastatic melanoma and two with ovarian cancer had received a vaccine produced by extracting their own cancer cells, engineering the cells to produce the immune-stimulating molecule, granulocyte-macrophage-colony-stimulating factor (GM-CSF), and vaccinating the patients with those cells. This vaccine was developed by Dranoff and his colleagues at DFCI. Four other metastatic melanoma patients had received different vaccines based on immune-stimulating antigens specific to melanomas.

Although the five patients treated with the GM-CSF vaccine had not responded completely to that vaccine, the researchers found clear evidence that the anti-CTLA-4 antibody enhanced the immune system attack on their tumors. However, treatment with the antibodies did not enhance tumor killing in the four melanoma patients treated with the melanoma antigens.

“In the melanoma patients who responded to the anti-CTLA-4 treatment, Dr. Dranoff saw a skin rash, which is a positive reaction,” said Allison. “Such rashes are evidence that the T cells were attacking normal melanocytes in the skin, which is considered a good prognostic sign for people with melanoma. It indicates that the melanoma is being attacked as well. And while the tumor size did not necessarily immediately decrease in these patients, it was clear from pathology studies that tumor cells were being killed and being replaced by these inflammatory T cells.” According to Allison, the patients with ovarian cancer showed an increase in the bloodstream of a marker molecule indicating that the cancer cells were being killed.

Other clinical trials of the anti-CTLA-4 antibody are ongoing, said Allison, and the early results from all the trials make him optimistic that the treatment will prove highly useful. “In my opinion, what is most exciting is that there is no reason that this approach to tumor therapy is limited to any particular kind of cancer,” he said. “However, until we get more experience with the treatment, we should take extreme care before extending CTLA-4 blockade from cancers arising from tissues that are not absolutely essential.”

According to Allison, CTLA-4 blockade could boost anti-cancer immune response to aid several kinds of therapies. “We have preliminary data indicating that the treatment can synergize not only with immunotherapy, but also with radiation and chemotherapy,” he said. “Under circumstances where these treatments also activate the immune system, anti-CTLA-4 therapy could enhance those therapies.”

Allison emphasized that the anti-CTLA-4 antibodies only stimulate the immune system during a narrow window of treatment. “The beauty of this treatment is that the antibodies by themselves are benign. After they clear from the system, immune regulation returns to normal, and the patient is left with an amplified population of anti-tumor T cells.”

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>