Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a gene responsible for spread of cancer in the body

03.03.2003


Researchers who are now at Georgetown University’s Lombardi Cancer Center have identified a gene that promotes metastases, the spread of cancer cells through the body. This new understanding of how cancer metastasizes, linking a gene product and migration of cancer cells, may lead to therapies to stop this spread. The results of the study are published in the May 2003 issue of the journal Molecular Biology of the Cell. An advance copy of the paper can be viewed after the embargo is lifted at http://www.molbiolcell.org/in_press.shtml



Richard G. Pestell, M.D., Ph.D. and his research team have been studying the cyclin D1 gene and the protein it produces for the past decade. Now they have found that by "knocking out" this gene, the migration of cells can be halted. The migration of cancer cells through the body is a major reason why cancer is deadly.

"Patients who do not survive their cancer, often don’t die from their primary cancer, usually they die from the spread of the disease through the body. If we can understand what causes the metastasis, then we can pinpoint new targets to block the spread of disease," said Dr. Pestell, director of the Lombardi Cancer Center, chairman of Georgetown’s Department of Oncology and Charlotte Gragnani professor of oncology. "Since cancerous -- but not normal epithelial cells -- migrate, therapy targeted to cell migration would be more selective. Killing only migrating cancer cells is thus less toxic, producing fewer side effects, than current chemotherapy which targets dividing cells of all types."


"We want to make the life journey a better one for people who have cancer," added Dr. Pestell, "and we at Lombardi are always trying to think of new approaches. Improving the quality of life for people with cancer is key. Slowing down the disease may change cancer from a fatal disease to one that can be lived with like diabetes."

The research was conducted at the Albert Einstein College of Medicine in New York where Dr. Pestell worked prior to joining the Lombardi Cancer Center at Georgetown.

This study was funded by the National Institutes of Health, the Susan G. Komen Breast Cancer Foundation and the Department of Defense. Co-authors of this study are Peter Neumeister, Fiona J. Pixley, Ying Xiong, Huafeng Xie, Koming Wu, Anthony Ashton, Michael Cammer, Amanda Chan, Marc Symons, and E. Richard Stanley.

In their Lombardi laboratories, Dr. Pestell and his colleagues are currently attempting to "fine tune" exactly how cell migration differs from cell proliferation so they can devise targeted drug therapy to stop the spread of cancer through the body.

They are also exploring a stealth anticancer weapon. They reported in the December 2002 issue of the journal Chemistry & Biology on initial research on a new modality called caging therapy that targets single malignant cells. Unlike taking a pill that goes to all cells in the body, caging therapy uses light beams in an extremely specific approach to eradicating individual cancer cells. These findings, as well as the developments described in the Molecular Biology of the Cell paper, hold the potential of significantly improving quality of life for cancer patients through the development of less toxic treatment options.


The Lombardi Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 40 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington DC area.

Editorial note: The Molecular Biology of the Cell paper includes an electron microscope video of migrating cancer cells. This can be viewed from a link available at http://www.molbiolcell.org/in_press.shtml after noon on February 28.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.molbiolcell.org/in_press.shtml

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>