Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a gene responsible for spread of cancer in the body

03.03.2003


Researchers who are now at Georgetown University’s Lombardi Cancer Center have identified a gene that promotes metastases, the spread of cancer cells through the body. This new understanding of how cancer metastasizes, linking a gene product and migration of cancer cells, may lead to therapies to stop this spread. The results of the study are published in the May 2003 issue of the journal Molecular Biology of the Cell. An advance copy of the paper can be viewed after the embargo is lifted at http://www.molbiolcell.org/in_press.shtml



Richard G. Pestell, M.D., Ph.D. and his research team have been studying the cyclin D1 gene and the protein it produces for the past decade. Now they have found that by "knocking out" this gene, the migration of cells can be halted. The migration of cancer cells through the body is a major reason why cancer is deadly.

"Patients who do not survive their cancer, often don’t die from their primary cancer, usually they die from the spread of the disease through the body. If we can understand what causes the metastasis, then we can pinpoint new targets to block the spread of disease," said Dr. Pestell, director of the Lombardi Cancer Center, chairman of Georgetown’s Department of Oncology and Charlotte Gragnani professor of oncology. "Since cancerous -- but not normal epithelial cells -- migrate, therapy targeted to cell migration would be more selective. Killing only migrating cancer cells is thus less toxic, producing fewer side effects, than current chemotherapy which targets dividing cells of all types."


"We want to make the life journey a better one for people who have cancer," added Dr. Pestell, "and we at Lombardi are always trying to think of new approaches. Improving the quality of life for people with cancer is key. Slowing down the disease may change cancer from a fatal disease to one that can be lived with like diabetes."

The research was conducted at the Albert Einstein College of Medicine in New York where Dr. Pestell worked prior to joining the Lombardi Cancer Center at Georgetown.

This study was funded by the National Institutes of Health, the Susan G. Komen Breast Cancer Foundation and the Department of Defense. Co-authors of this study are Peter Neumeister, Fiona J. Pixley, Ying Xiong, Huafeng Xie, Koming Wu, Anthony Ashton, Michael Cammer, Amanda Chan, Marc Symons, and E. Richard Stanley.

In their Lombardi laboratories, Dr. Pestell and his colleagues are currently attempting to "fine tune" exactly how cell migration differs from cell proliferation so they can devise targeted drug therapy to stop the spread of cancer through the body.

They are also exploring a stealth anticancer weapon. They reported in the December 2002 issue of the journal Chemistry & Biology on initial research on a new modality called caging therapy that targets single malignant cells. Unlike taking a pill that goes to all cells in the body, caging therapy uses light beams in an extremely specific approach to eradicating individual cancer cells. These findings, as well as the developments described in the Molecular Biology of the Cell paper, hold the potential of significantly improving quality of life for cancer patients through the development of less toxic treatment options.


The Lombardi Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 40 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington DC area.

Editorial note: The Molecular Biology of the Cell paper includes an electron microscope video of migrating cancer cells. This can be viewed from a link available at http://www.molbiolcell.org/in_press.shtml after noon on February 28.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.molbiolcell.org/in_press.shtml

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018 | Power and Electrical Engineering

Electrode shape improves neurostimulation for small targets

25.04.2018 | Medical Engineering

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>