Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find ’stem cells’ in human breast cancer


Discovery could explain current treatment failures and lead to more effective therapies for many cancers

Of all the neoplastic cells in human breast cancers, only a small minority – perhaps as few as one in 100 – appear to be capable of forming new malignant tumors, according to just-published research by scientists in the University of Michigan Comprehensive Cancer Center. The discovery could help researchers zero in on the most dangerous cancer cells to develop new, more effective treatments.

"These tumor-inducing cells have many of the properties of stem cells," says Michael Clarke, M.D., a U-M professor of internal medicine, who directed the study. "They make copies of themselves – a process called self-renewal – and produce all the other kinds of cells in the original tumor."

Although similar cells have been identified in human leukemia, these are the first to be found in solid tumors, Clarke adds. The cells were isolated from primary or metastatic breast cancers removed from nine women treated for cancer at the U-M’s Cancer Center.

The discovery – reported this week in the online early edition of the Proceedings of the National Academy of Sciences – also may explain why current treatments for metastatic breast cancer often fail, says Max S. Wicha, M.D., an oncologist and director of the U-M Comprehensive Cancer Center.

"The goal of all our existing therapies has been to kill as many cells within the tumor as possible," Wicha says. "This study suggests that the current model may not be getting us anywhere, because we have been targeting the wrong cells with the wrong treatments. Instead, we need to develop drugs targeted at the tumor’s stem cells. If we are to have any real cures in advanced breast cancer, it will be absolutely necessary to eliminate these cells.

"What this means for women with cancer is that, for the first time, we can define what we believe are the important cells – the cells which determine whether the cancer will come back or be cured," Wicha adds. "Before this, we didn’t even know there were such cells."

All cancer cells have a unique pattern of proteins, similar to a fingerprint, on their surface membranes, explains Muhammad Al-Hajj, Ph.D., a U-M post-doctoral fellow and first author of the PNAS paper. " We used specific antibodies and flow cytometry technology to segregate the phenotypically heterogenous cancer cells within a tumor into isolated populations based on their surface protein markers," Al-Hajj says.

These isolated cell populations were then individually injected into immune-deficient mice and the mice were examined for tumor growth every week for up to six months.

Al-Hajj found a small group of cells, with a phenotype common to all but one of the human tumors in the study, could form new cancers in mice. These cells all expressed a protein marker called CD44, in addition to having either very low levels or no levels of a marker called CD24.

"As few as 100 to 200 of these tumor-inducing cells, isolated from eight of nine tumors in the study, easily formed tumors in mice, while tens of thousands of the other cancer cells from the original tumor failed to do so," Clarke says.

The fact that tumor-inducing stem cells from eight of nine women showed a common surface marker pattern is significant, Wicha explains. "Even though it’s only nine patients, it shows that the markers identifying these stem cells were expressed in the majority of breast cancer patients in the study. This may not be the only expression pattern on every patient’s stem cells, but it demonstrates the validity of the cancer stem cell model."

To test the stem cell’s ability to regenerate the original tumor, U-M scientists repeated the experiment up to four times. First, 200 cells with the unique two-marker surface pattern were isolated from the original human tumor. When these cells produced a breast tumor in a mouse, Al-Hajj removed the mouse tumor and used flow cytometry to isolate 200 stem cells from it. These cells were then injected into another mouse to produce another tumor. Once again, the tumor was harvested, stem cells were separated, and injected into another mouse. Each procedure is called a passage.

"Tumor cells with this particular surface marker pattern produced a new tumor in the next generation of mouse every time," Clarke explains. "When we examined the tumors after each passage, we found their cell diversity to be the same as the original tumor."

Given that tumor-inducing cells now have been identified in breast and blood cancers, Wicha and Clarke believe it is likely that similar cells drive the development of other types of cancer, as well. The U-M Comprehensive Cancer Center is establishing a new research program to identify stem cells in other cancers and develop new therapies to destroy them.

"What we are working on now is finding out what makes these tumor stem cells different from the other cells in a tumor," Wicha says. "Now that we can actually identify them, we can start developing treatments to specifically target and hopefully eliminate them."

"This is not a cure for cancer," Clarke emphasizes. "But it is a very promising lead, which will focus our efforts to try to find a cure for cancer."

In addition to Al-Hajj, Wicha and Clarke, Sean J. Morrison, Ph.D., a Howard Hughes Medical Institute assistant investigator and U-M assistant professor of internal medicine, is a collaborator in the research study.

The U-M study was funded by the National Cancer Institute. The U-M has applied for a patent on the identity and function of tumor stem cells.

Kara Gavin | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>