Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene appears to play important important role in controlling the growth of colorectal cancer cells

18.02.2003


Researchers at the University of Pittsburgh Cancer Institute (UPCI), in collaboration with Johns Hopkins University School of Medicine have found that a recently discovered gene plays an essential role in mediating apoptosis, or cell death, in colorectal cancer cells. The results are published in the Feb. 18 issue of Proceedings of the National Academy of Sciences.



The gene, PUMA, or p53 up-regulated modulator of apoptosis, is controlled by p53 – a tumor-suppressing gene that prevents normal cells from turning into life-threatening tumor cells. Previous research has determined that damage to p53 is fundamental to the development of a vast majority of cancers, and inactivation of the growth-controlling function of p53 is critical to the growth and spread of most cancers.

The leading investigators of the study, Lin Zhang, Ph.D., assistant professor of pharmacology, University of Pittsburgh and Jian Yu, Ph.D., assistant professor of pathology, University of Pittsburgh, performed several gene targeting experiments involving PUMA and found that if the gene is deleted in colorectal cancer cells, cell death is prevented. These findings build on previous findings published in 2001 in Molecular Cell, where the same research team identified PUMA as a novel gene that when expressed, resulted in rapid and profound apoptosis.


"This research results from our interest in looking at how cancer cells die when treated with anti-cancer therapies and why chemotherapy often fails to destroy cancer," said Dr. Yu. "We have learned that when we get rid of PUMA in cancer cells, the cells are more resistant to dying compared to their counterparts that have intact PUMA."

"Given these findings, our next step is to look for compounds that elevate the level of PUMA in colorectal cancer cells, enabling us to test promising new therapies for cancer. PUMA itself is also an attractive target for gene therapy. At UPCI, we are trying to expand these approaches to a variety of cancers," said Dr. Zhang.



This study was funded, in part, by a grant from the National Institutes of Health. Co-authors of the study include, Zhenghe Wang, Ph.D., Kenneth W. Kinzler, Ph.D., and Bert Vogelstein, M.D., all with the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University.

World-renowned for innovative approaches to cancer prevention, detection and diagnosis, UPCI recently relocated to the Hillman Cancer Center at UPMC Shadyside Hospital. The Hillman Cancer Center is the flagship facility for both UPCI and the UPMC Cancer Centers – a network of more than 30 office-based medical oncology practices and regional cancer centers that provide the highest standard of care for patients throughout western Pennsylvania. UPCI and the UPMC Cancer Centers’ program in cancer currently ranks 11th in the country.

Contact:
Clare Collins
Jocelyn Uhl
PHONE: (412) 647-3555
FAX: (412) 624-3184
E-MAIL:
CollCX@upmc.edu
UhlJH@upmc.edu


Clare Collins | EurekAlert!
Further information:
http://www.upci.upmc.edu
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>