Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene appears to play important important role in controlling the growth of colorectal cancer cells


Researchers at the University of Pittsburgh Cancer Institute (UPCI), in collaboration with Johns Hopkins University School of Medicine have found that a recently discovered gene plays an essential role in mediating apoptosis, or cell death, in colorectal cancer cells. The results are published in the Feb. 18 issue of Proceedings of the National Academy of Sciences.

The gene, PUMA, or p53 up-regulated modulator of apoptosis, is controlled by p53 – a tumor-suppressing gene that prevents normal cells from turning into life-threatening tumor cells. Previous research has determined that damage to p53 is fundamental to the development of a vast majority of cancers, and inactivation of the growth-controlling function of p53 is critical to the growth and spread of most cancers.

The leading investigators of the study, Lin Zhang, Ph.D., assistant professor of pharmacology, University of Pittsburgh and Jian Yu, Ph.D., assistant professor of pathology, University of Pittsburgh, performed several gene targeting experiments involving PUMA and found that if the gene is deleted in colorectal cancer cells, cell death is prevented. These findings build on previous findings published in 2001 in Molecular Cell, where the same research team identified PUMA as a novel gene that when expressed, resulted in rapid and profound apoptosis.

"This research results from our interest in looking at how cancer cells die when treated with anti-cancer therapies and why chemotherapy often fails to destroy cancer," said Dr. Yu. "We have learned that when we get rid of PUMA in cancer cells, the cells are more resistant to dying compared to their counterparts that have intact PUMA."

"Given these findings, our next step is to look for compounds that elevate the level of PUMA in colorectal cancer cells, enabling us to test promising new therapies for cancer. PUMA itself is also an attractive target for gene therapy. At UPCI, we are trying to expand these approaches to a variety of cancers," said Dr. Zhang.

This study was funded, in part, by a grant from the National Institutes of Health. Co-authors of the study include, Zhenghe Wang, Ph.D., Kenneth W. Kinzler, Ph.D., and Bert Vogelstein, M.D., all with the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University.

World-renowned for innovative approaches to cancer prevention, detection and diagnosis, UPCI recently relocated to the Hillman Cancer Center at UPMC Shadyside Hospital. The Hillman Cancer Center is the flagship facility for both UPCI and the UPMC Cancer Centers – a network of more than 30 office-based medical oncology practices and regional cancer centers that provide the highest standard of care for patients throughout western Pennsylvania. UPCI and the UPMC Cancer Centers’ program in cancer currently ranks 11th in the country.

Clare Collins
Jocelyn Uhl
PHONE: (412) 647-3555
FAX: (412) 624-3184

Clare Collins | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>