Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene appears to play important important role in controlling the growth of colorectal cancer cells

18.02.2003


Researchers at the University of Pittsburgh Cancer Institute (UPCI), in collaboration with Johns Hopkins University School of Medicine have found that a recently discovered gene plays an essential role in mediating apoptosis, or cell death, in colorectal cancer cells. The results are published in the Feb. 18 issue of Proceedings of the National Academy of Sciences.



The gene, PUMA, or p53 up-regulated modulator of apoptosis, is controlled by p53 – a tumor-suppressing gene that prevents normal cells from turning into life-threatening tumor cells. Previous research has determined that damage to p53 is fundamental to the development of a vast majority of cancers, and inactivation of the growth-controlling function of p53 is critical to the growth and spread of most cancers.

The leading investigators of the study, Lin Zhang, Ph.D., assistant professor of pharmacology, University of Pittsburgh and Jian Yu, Ph.D., assistant professor of pathology, University of Pittsburgh, performed several gene targeting experiments involving PUMA and found that if the gene is deleted in colorectal cancer cells, cell death is prevented. These findings build on previous findings published in 2001 in Molecular Cell, where the same research team identified PUMA as a novel gene that when expressed, resulted in rapid and profound apoptosis.


"This research results from our interest in looking at how cancer cells die when treated with anti-cancer therapies and why chemotherapy often fails to destroy cancer," said Dr. Yu. "We have learned that when we get rid of PUMA in cancer cells, the cells are more resistant to dying compared to their counterparts that have intact PUMA."

"Given these findings, our next step is to look for compounds that elevate the level of PUMA in colorectal cancer cells, enabling us to test promising new therapies for cancer. PUMA itself is also an attractive target for gene therapy. At UPCI, we are trying to expand these approaches to a variety of cancers," said Dr. Zhang.



This study was funded, in part, by a grant from the National Institutes of Health. Co-authors of the study include, Zhenghe Wang, Ph.D., Kenneth W. Kinzler, Ph.D., and Bert Vogelstein, M.D., all with the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University.

World-renowned for innovative approaches to cancer prevention, detection and diagnosis, UPCI recently relocated to the Hillman Cancer Center at UPMC Shadyside Hospital. The Hillman Cancer Center is the flagship facility for both UPCI and the UPMC Cancer Centers – a network of more than 30 office-based medical oncology practices and regional cancer centers that provide the highest standard of care for patients throughout western Pennsylvania. UPCI and the UPMC Cancer Centers’ program in cancer currently ranks 11th in the country.

Contact:
Clare Collins
Jocelyn Uhl
PHONE: (412) 647-3555
FAX: (412) 624-3184
E-MAIL:
CollCX@upmc.edu
UhlJH@upmc.edu


Clare Collins | EurekAlert!
Further information:
http://www.upci.upmc.edu
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>