Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visual analysis of 18F-FDG PET Scans: Effective prognostic tool for cervical cancer patients

06.02.2003


When developing a treatment plan for cervical cancer, it is important to be able to determine a patient’s prognosis, ideally at the time of diagnosis. Existing methods to arrive at a prognosis can be time consuming, inaccurate and may require specialized software. Therefore, doctors from the Washington University School of Medicine developed – and validated – an accurate, reproducible and quick prognostic system.



The researchers created a grading scale to use in conjunction with a simple visual analysis of 18F-FDG PET scans. The grading system considered the size and shape of the primary tumor, as well as the heterogeneity of 18F-FDG uptake and presence of lymph nodes. A cutoff value was established to separate the women with "good" and "bad" prognoses, and Kaplan-Meier analysis provided a guideline both for progression-free survival and for overall survival. Researchers also examined whether knowledge about the presence of lymph notes impacted the efficacy of the system.

The retrospective study was conducted using data from 47 patients. Three independent observers, who had no knowledge of the patients, evaluated and graded the PET scans. The close scores and survival prognoses of the three observers demonstrated the reproducibility of the test. A comparison of the observers’ projected outcomes and the actual outcomes verified the accuracy and the power of this visual analysis; for example, 80% of those women who were predicted to have a bad diagnosis did not survive while only 10% with a good prognosis died. The information about the presence of lymph nodes increased the accuracy only slightly compared to the analysis of tumor characteristics alone.


Improved Prognostic Value of 18F-FDG PET Using a Simple Visual Analysis of Tumor Characteristics in Patients with Cervical Cancer, published in the February 2003 issue of The Journal of Nuclear Medicine, describes a simple qualitative technique for developing a prognosis for women with cervical cancer. The article was written by: Tom R. Miller, MD, PhD, Edward Pinkus, MD, and Farrokh Dehdashti, MD, Mallinckrodt Institute of Radiology as well as Perry W. Grigsby, MD, Department of Radiation Oncology, all from the Washington University School of Medicine, St. Louis, Missouri.

Copies of the article and images related to the study are available to media upon request to Kimberly A. Bennett. Copies of the current and past issues of The Journal of Nuclear Medicine are available online at jnm.snmjournals.org. Print copies can be obtained at $15 per copy by contacting the SNM Service Center, Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 20190-5315; phone: 703-326-1186; fax: 703-708-9015; e-mail: servicecenter@snm.org. A yearly subscription to the journal is $170. A journal subscription is a member benefit of the Society of Nuclear Medicine.


The Society of Nuclear Medicine is an international scientific and professional organization of more than 14,000 members dedicated to promoting the science, technology, and practical applications of nuclear medicine. The SNM is based in Reston, VA.

Kimberly A. Bennett | EurekAlert!
Further information:
http://www.snm.org/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>