Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visual analysis of 18F-FDG PET Scans: Effective prognostic tool for cervical cancer patients

06.02.2003


When developing a treatment plan for cervical cancer, it is important to be able to determine a patient’s prognosis, ideally at the time of diagnosis. Existing methods to arrive at a prognosis can be time consuming, inaccurate and may require specialized software. Therefore, doctors from the Washington University School of Medicine developed – and validated – an accurate, reproducible and quick prognostic system.



The researchers created a grading scale to use in conjunction with a simple visual analysis of 18F-FDG PET scans. The grading system considered the size and shape of the primary tumor, as well as the heterogeneity of 18F-FDG uptake and presence of lymph nodes. A cutoff value was established to separate the women with "good" and "bad" prognoses, and Kaplan-Meier analysis provided a guideline both for progression-free survival and for overall survival. Researchers also examined whether knowledge about the presence of lymph notes impacted the efficacy of the system.

The retrospective study was conducted using data from 47 patients. Three independent observers, who had no knowledge of the patients, evaluated and graded the PET scans. The close scores and survival prognoses of the three observers demonstrated the reproducibility of the test. A comparison of the observers’ projected outcomes and the actual outcomes verified the accuracy and the power of this visual analysis; for example, 80% of those women who were predicted to have a bad diagnosis did not survive while only 10% with a good prognosis died. The information about the presence of lymph nodes increased the accuracy only slightly compared to the analysis of tumor characteristics alone.


Improved Prognostic Value of 18F-FDG PET Using a Simple Visual Analysis of Tumor Characteristics in Patients with Cervical Cancer, published in the February 2003 issue of The Journal of Nuclear Medicine, describes a simple qualitative technique for developing a prognosis for women with cervical cancer. The article was written by: Tom R. Miller, MD, PhD, Edward Pinkus, MD, and Farrokh Dehdashti, MD, Mallinckrodt Institute of Radiology as well as Perry W. Grigsby, MD, Department of Radiation Oncology, all from the Washington University School of Medicine, St. Louis, Missouri.

Copies of the article and images related to the study are available to media upon request to Kimberly A. Bennett. Copies of the current and past issues of The Journal of Nuclear Medicine are available online at jnm.snmjournals.org. Print copies can be obtained at $15 per copy by contacting the SNM Service Center, Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 20190-5315; phone: 703-326-1186; fax: 703-708-9015; e-mail: servicecenter@snm.org. A yearly subscription to the journal is $170. A journal subscription is a member benefit of the Society of Nuclear Medicine.


The Society of Nuclear Medicine is an international scientific and professional organization of more than 14,000 members dedicated to promoting the science, technology, and practical applications of nuclear medicine. The SNM is based in Reston, VA.

Kimberly A. Bennett | EurekAlert!
Further information:
http://www.snm.org/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>