Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimally invasive procedure fixes heart defect that allows blood clots to reach the brain

30.01.2003

When 29-year-old Eric Lange suddenly experienced several hours of mental confusion last July, physicians at Cedars-Sinai Medical Center naturally ordered brain scans and carotid artery studies in their first search for a cause.

With the initial exams turning out OK, Eric’s neurologist pursued other clues and ended up finding a heart defect called a patent foramen ovale, or PFO. A blood clot was believed to have slipped through the defect and out of the normal route of circulation that would have filtered it in the lungs. Instead, the clot traveled to Eric’s brain and temporarily blocked the flow of blood, causing a transient ischemic attack, or TIA, which is similar to a stroke but it does not cause permanent brain damage.

Saibal Kar, M.D., director of Interventional Cardiology Research in the Division of Cardiology, was able to repair the defect using a minimally invasive non-surgical approach to insert an innovative device, called CardioSEAL®, to close the hole, saving Eric the physical stress and months of recovery of open-heart surgery.

Eric said he had no idea that a problem existed. “I just woke up one morning, I went to leave my apartment and I couldn’t get the door open,” he recalled. “I couldn’t understand why. I asked my girlfriend to come help. She undid the deadbolt. I’m like, ‘I should have known that.’ I went outside and I couldn’t remember where I parked my car. I suddenly started thinking about other things and I couldn’t remember my phone number or anything. That ’s when I knew something was wrong.”

Eric’s thought processes remained jumbled for several hours after he arrived at the emergency department at Cedars-Sinai. “I later learned there that I couldn’t read. I could recognize words but I couldn’t get them to come out of my mouth. That lasted about five hours, all said and done, in the emergency room.”

Because initial tests provided no explanation for Eric’s episode, he was admitted to the hospital for a series of diagnostic procedures. Several days later, a special test called a bubble contrast echocardiogram detected a hole connecting the two upper chambers of the heart.

Normally, oxygen-depleted blood enters the heart’s right upper chamber (right atrium) and goes to the right lower chamber (right ventricle), where it is pumped out through the pulmonary arteries to the lungs for filtration and oxygenation. From the lungs, blood enters the left upper chamber (left atrium) and goes to the left lower chamber (left ventricle) where it is pumped out through the aorta to the arteries that feed the body.

The possibility of PFO arises because heart circulation is different before birth. The oxygen needs of the fetus are supplied by the circulation from the mother. Therefore, the fetus does not breathe on its own and there is no need for blood to circulate from the heart through the lungs. Instead, most of the blood flows through a hole (the foramen ovale) that exists between the two upper chambers of the heart, bypassing the right ventricle and the lungs.

When the newborn takes its first breath, pressure inside the vessels and the heart force a flap to close over the hole, rerouting the blood through the right ventricle and the lungs. This flap does not always close or seal tight enough to prevent some blood from passing between the upper chambers, at least occasionally. In most cases, this condition remains undetected and causes only minimal consequences, if any. PFOs often remain unnoticed even until late adulthood.

Dr. Kar said that in the past if an asymptomatic PFO happened by chance to be discovered, most surgeons chose to leave it untreated, especially because until recently open-heart surgery was required to patch the hole. The large incision, long recovery time and risk that go with major surgery usually outweighed the potential benefit unless the opening was especially large or the patient was vulnerable. Scuba divers, for example, may have a greater chance of experiencing a problem because bubbles of nitrogen that form in the blood during dives may pass through an untreated PFO.

The new technique enables physicians to reach the heart by inserting a catheter through a vein in the groin. The approach is similar to that used during routine cardiac catheterization. In the case of PFO closure, the catheter serves as a conduit for the delivery of the CardioSEAL®, a double umbrella device made of polyester fabric mounted on metallic framework.

Eric’s procedure was performed in a cardiac cath lab. Using X-ray (angiography) and ultrasound imaging, Dr. Kar threaded the catheter from the groin through a vein into the heart. Because the slender ultrasound imaging catheter was also inserted through a vein to the heart, there was no need for an ultrasound catheter to be placed down the esophagus, a procedure that would have required general anesthesia.

Dr. Kar then attached the closure device to a thin cable and slid it through the catheter to the site of the defect. When it was properly positioned in the center of the hole and released, the device opened and locked in place on both sides of the defect. Heart wall tissue would grow around the device within a few months, completely and permanently closing the hole.

The procedure was accomplished in less than an hour with only mild sedation and a local anesthetic. Watching the angiogram during the procedure, Eric was able to see the closure device being deployed “like two umbrellas that spring together,” he said. If he had not already been hospitalized for the diagnostic procedures, the treatment most likely would have been performed on an outpatient basis. Instead, he was discharged the following day.

“I was out to dinner with my parents the night I left,” said Eric. “It really is incredible.”

While a PFO is thought to be present in up to 12 percent of the normal population, as many as 40 percent of young patients like Eric who have a stroke caused by an unknown source may have a PFO. This suggests that the mechanism of stroke in these patients is the escape, through the PFO, of a “paradoxical embolism” – a clot that forms in the veins but makes its way into the arterial circulation. Experts believe that stroke patients with a relatively large PFO are three times more likely than those without a PFO to suffer another stroke, even if placed on preventive medications.

The U.S. Food and Drug Administration approved the device in early 2002 under the humanitarian device exemption for selected patients with a PFO who have a history of stroke from presumed paradoxical embolism passing through the PFO. The device has been in routine clinical use in Europe since 1996.

Cedars-Sinai Medical Center is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandra Van | Cedars-Sinai Public Relations

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>